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Abstract: Assuming a spinning 2-sphere in the Euclidean 3-space that is
observed by a frame at any exterior point, we deduce the Coriolis effect, which
asserts that the rotational directions of the flows on the Earth surface are
opposite across the Equator. By the continuity of the angular momentum, we
project the vector of angular momentum onto all tangent planes to the sphere.
We arrive at elliptical orbits and the spiral motions toward the plug point of
any domestic sink.
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1. Introduction

This paper examines the effect of a spinning 2-sphere S2 on the local tangent
planes

{

TpS
2 | p ∈ S2

}

. An extensive literature research has produced null re-
sults similar to our treatment here, with the closest being [3], where the idea
of projection of angular momentum was invoked, an idea that incidentally is

ubiquitous in quantum mechanics, as the Planck constant ~ is angular momen-
tum and the projection operator is a standard apparatus (cf. [4], also see, e.g.,
[7]). We also note that our analysis here is not about a vector field over S2
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(as in [10], also cf. [11], p. 468, 476); rather we analyze a tangent bundle to a
spinning sphere. To be sure, our approach here is that of a Gaussian intrinsic
geometry; we deduce the existence of a spinning S2, which is observable only
extrinsically, by analyzing the vector field on TpS

2 locally (cf. e.g., [13], where
extrinsic features such as centrifugal forces were factors in the analysis).

Our motivation here is to demystify the Coriolis effect as noted by the
French engineer Gaspard Gustav de Coriolis (1792-1843) that fluids rotate on
Earth counterclockwise in the northern hemisphere and clockwise in the south-
ern hemisphere, by giving a mathematical derivation of this effect as based on
the spin of Earth and its projections onto

{

TpS
2 | p ∈ S2 = Earth surface

}

. To
our knowledge, our treatment here has never been made before; the bulk of the
literature has been about how the Coriolis effect alters the wave equations in
fluid dynamics (see, e.g. [5], [8]), which in particular include oceanic and atmo-
spheric motions (see, e.g. [9] , [12]), and how it affects molecular and mechanical
motions (see, e.g., [1], [10]) as well as how it has far-reaching consequences in
cosmic rotating black holes (see [2]) or even in flight performances of pilots due
to optical disorientation (see, e.g. [6]).

Section 2 below presents our analysis, which begins with a local TpS
2 and

ends with a global spinning S2; we present dynamical systems on
{

TpS
2 | p ∈ S2

}

as well as their rotating orbits, and finally a domestic sink, which is subject to
Earth gravity. Section 3 concludes with a summary remark.

2. Analysis

Consider in a reference frame Φp a circle S1 ⊂ R
2
(x,y) spinning relative to the

z-axis with angular frequency ω > 0; i.e.,

S1
ω = {(x, y, z) = (cosωt, sinωt, 0) | ∀t ∈ R}Φp

,

with (the conserved) angular momentum

l = r (t)×P (t) = ez

(

kg ·
m2

s

)

for any particle of mass 1 kilogram rotating around the origin OΦp
in a distance

of r (t) meters to OΦp
with an instantaneous velocity of magnitude r−1 (t) me-

ters/second and in the direction of the tangent to the orbit, which includes the
present case of a circle with r (t) ≡ 1, with

ez = ex × ey at t = 0.

Consider at t = 0 a rotation of ex from (1, 0, 0) to (cosα, sinα, 0), α ∈ [0, π];
then we have
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(cosα, sinα, 0) × ey = cosα · ez, (1)

with ‖cosα · ez‖ ≤ 1; equality holds if and only if α = 0 or π.

Next consider a rotation of ex from (1, 0, 0) to (cosα, 0, sin α), α ∈ [0, π];
then we have

(cosα, 0, sinα)× ey = (− sinα, 0, cosα) ≡ ez∗,

if we project ez∗ onto ez, then we obtain (cf. [8])

Πz (ez∗) = (0, 0, cos α) = cosα · ez. (2)

Comparing Equation (1) with Equation (2), we have

Πz (ez∗) = cosα · ez = (cosα, sinα, 0) × ey,

or the projection of ez∗ onto ez is indistinguishable from an altered cross product
(cosα, sinα, 0) × ey on the tangent plane T to a sphere S2 at p ∈ S2, TpS

2,
where

S2 =

{

(x, y, z) = (sinφ cos θ, sinφ sin θ, cosφ)
| φ ∈ [0, π] , θ ∈ [0, 2π)

}

Φq

spins relative to the z-axis in a reference frame Φq ∀q ∈ R
3 − r · S2, ∀r ∈ [0, 1];

i.e., S2 is observed by any exterior point q ∈ R
3 −B3 spinning as

S2
ω =

{

(x, y, z) = (sinφ cos ωt, sinφ sinωt, cosφ)
| φ ∈ [0, π]

}

Φq

,

on which

p = (sinφ cosωt, sinφ sinωt, cosφ) with

φq = −αp ∈ [0, π] .

By the continuous dependence of (cosαp · ez) on αp ≡ −φq, we see that the spin
of S2

ω yields an angular momentum cosα ·ez on TpS
2. We thus rotate T(0,0,1)S

2

to TpS
2 by an angle φ along any given θ ∈ [0, 2π), i.e.,





1 0 0
0 cosφ − sinφ
0 sinφ cosφ









x

y

0





Φq

=





x

cosφ · y
sinφ · y





Φq

(3)
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and project this rotated plane (3) onto TpS
2 by





1 0 0
0 1 0
0 0 0









x

cosφ · y
sinφ · y





Φq

=





x

cosφ · y
0





Φp

,

so that




cosωt
sinωt
0





Φq

∈ T(0,0,1)S
2

varies continuously to




cosωt
cosφ · sinωt

0





Φp

∈ TpS
2, ∀t ∈ R, (4)

with orbit equal to an ellipse (cf. [3])

cos2 φ · x2 (t) + y2 (t) = cos2 φ,

and the dynamical system over TpS
2 being a (velocity) vector field vp (x, y) ≡

(ẋ, ẏ) that equals, ∀φ ∈ [0, π] −
{

π
2

}

,

(

0 −ω secφ
ω cosφ 0

)(

x

y

)

p

(5)

=

(

−ω secφ · y
ω cosφ · x

)

p

; (6)

at φ = π
2 , the motion (4) degenerates to {(cosωt, 0, 0) | t ∈ R}, resulting in the

orbit [−1, 1] ⊂ Rx. Otherwise, ∀φ ∈
(

π
2 , π

]

the rotation on TpS
2 is clockwise,

i.e.,




cosωt
cosφ · sinωt

0





Φp

=





cos (−ω) t
|cosφ| · sin (−ω) t

0





Φp

.

We remark that the essence of the reversal of the rotation directions across
φ = π

2 is that the spinning of the z-axis in S2
ω, when viewed at 0 ≤ φ < π

2 , is
counterclockwise, but when viewed at π

2 < φ ≤ π, is clockwise. Equivalently
stated, the fact that (x, y)-plane is oriented from x to y (i.e., counterclockwise)
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is due to the fact that the “outward normal” to the (x, y)-plane is defined to
be the z-axis, so that det (ex, ey, ez) = 1 > 0, but at φ = π the outward
normal to T(0,0,−1)S

2 is −z so that T(0,0,−1)S
2 is oriented from y to x and thus

det (ey, ex,−ez) = 1 > 0, maintaining the consistency of the orientation of S2.
In this connection, we add an incidental note that for the following selected
points p = (x, y, z) ∈ S2, the individual associated outward normal to TpS

2

and its orientation are:

p = (1, 0, 0) =⇒ det (ex, ey, ez) = 1,

where the outward normal is ex,

p = (0, 1, 0) =⇒ det (ey, ez, ex) = 1,

p = (−1, 0, 0) =⇒ det (−ex, ez, ey) = 1,

p = (0,−1, 0) =⇒ det (−ey, ex, ez) = 1,

p = (0, 0, 1) =⇒ det (ez, ex, ey) = 1, and

p = (0, 0,−1) =⇒ det (−ez, ey, ex) = 1.

That is, for any orientable manifold M such as S2 there exist exactly two
possible choices to assign an orientation to M (with the physical analogue of
the “right-hand rule” or the “left-hand rule”) by virtue of the fact that there
exists exactly two equivalence classes of basis for any vector space, the class with
a positive determinant and the class with a negative determinant. Our analysis
here has to do with a spinning z-axis and its projection onto the outward normal
vectors to TpS

2 ∀p ∈ S2.
Now let S2 be the surface of Earth and p ∈ S2 be the point of the plug of

any household sink. By the gravity of Earth, the above dynamical system (5)
is altered to

{

ẋ = −ax− ω secφ · y
ẏ = ω cosφ · x− ay

}

,

where a > 0 is a function of the construct of the sink as well as the contained
liquid. Then the matrix

(

−a −ω secφ
ω cosφ −a

)

, φ 6=
π

2
,

yields eigenvalues
λ = −a± ωi,

leading to the general solution
(

x (t)
y (t)

)

p

= c1e
−at

(

cosωt
cosφ · sinωt

)
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+c2e
−at

(

sinωt
− cosφ · cosωt

)

,

∀c1, c2 ∈ R, (7)

exhibiting a spiral motion toward p.
Thus any reference frame TpS

2 can deduce its |φ| on S2
ω by the ratio

|cosφ| =
min ‖(x (t) , y (t))‖

max ‖(x (t) , y (t))‖

of the ellipse on TpS
2. That is, one knows that Earth is spinning as well as the

latitude he/she is on simply by observing the sink flows (albeit with the need
of a measuring instrument of great precision); i.e., we have contributed to a
Gaussian intrinsic geometry.

3. Summary Remark

It has been said that around the Earth equator are tourists’ attractions that
contrast the sink flow directions between those to the north and those to the
south of the equator. Our analysis here shows that unless the sinks are specially
constructed, it is practically impossible to make such a demonstration, since the
above Equation (7) shows that at φ ≈ π

2 ,

c1e
−at

(

cosωt
cosφ · sinωt

)

≈ c1e
−at

(

cosωt
(±ǫ) · sinωt

)

,

with ǫ ≈ 0,

indicating that the sinks would have their flows nearly radially drawn to the
plug points. Thus our analysis here has clarified this myth. Otherwise we
have provided a mathematical derivation of the Coriolis effect, showing the
exact effect of a spinning 2-sphere S2

ω on TpS
2 ∀p ∈ S2

ω: the dynamical system
on TpS

2 with its general solutions and rotating orbits. As mentioned in the
Introduction, the Coriolis effect has wide-ranging implications, from nuclear to
molecular, to meteorological, to geological, to rotating black holes, and to flight
pilots. As such, our results here should also be of relevance to these diverse
fields. Mathematically since the Coriolis effect enters into the wave equations
in fluid dynamics, our analysis may serve as an added aspect. Overall we have
contributed an intrinsic geometry that one can potentially deduce being on a
spinning 2-sphere and the existing latitude by the elliptical orbit of a local flow
motion. Future studies may extend to relativistic considerations.
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