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Abstract: We consider in this paper two Cherednik operators Tf,T;, j=
1,2,3,...,d, on R? associated to the multiplicity functions k,[. First we define
and study in this paper the Cherednik-Trimeche’s transmutation operator Uy,
and its dual ‘Ui;. Next we study the Harmonic Analysis associated to these

operators.
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1. Introduction

In [1] I. Cherednik has introduced a family of differential-difference operators
that nowadays bear his name. These operators play a crucial role in the the-
ory of Heckman-Opdam’s hypergeometric functions, which generalize the the-
ory of Harish-Chandra’s spherical functions on Riemmann symetric spaces (see
(2,3,4]).

We consider in this paper two Cherednik operators Tf and TJZ, 7=12..d,
on R?, associated to the multiplicity functions k,[ € [0,00).

By using the Harmonic Analysis associated to the Cherednik operators (see
[2,3,4,5,6,7]), given in Sections 2,3,4,5,6, we define and study in the other
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sections the Cherednik-Trimeche’s transmutation operator Uy, and its dual
tU, the Cherednik-Trimeche’s translation operator Tfl and its dual tT!jl , the
Cherednik-Trimeche’s convolution product, the Cherednik-Trimeche’s heat ker-

nel pf'(z,y).

2. The Cherednik operators and their eigenfunctions

We consider R? with the standard basis {e;;j =1,2,...,d} and the inner prod-
uct (.,.) for which this basis is orthonormal.

2.1. The root system

2
Let a € RA\{0} and & = Wa. We denote by
a

ro(z) =z — (&,z)a, x€RY (2.1)

the reflection on the hyperplan H, C R? orthogonal to . For d = 1, we take
a=2.

A finite set R € R%\{0} is called a root system if r,R = R, for all a € R.
For a given 8 € R User He, we fix the positive subsystem R, = {a €
R, (o, f) > 0}, then for each o € R either « € R4 or —a € Ry

The reflections o, € R, generate a finite group W C O(d), called the
reflection group associated with R. Let Rf}eg = RN\Uqer Hy be the set of
regular elements in R%.

A function k£ : R — [0, +o0] is called a multiplicity function, if it is invariant
under the action of the reflection group W. We introduce the index

v =1R)= 3 k(o). (2.2)

aER ¢

2.2. The Cherednik operators

The Cherednik operators Tf, j=1,2,....,d, on R? associated with the reflection

group W and the multiplicity function k, are defined for f of class C' on R¢
and z € R% by

reg

T = @)+ ) TR )~ fro)} = AT @), (23)

O(GR+
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where

= % Z k(a)a?, and o/ = (a, e;). (2.4)
aER ¢
The Cherednik operators form a commutative system of differential-diffe-
rence operators.
For f of class C! on R? with compact support and ¢ of class C' on R¢, we
have for j =1,2,..,d:

| @@ A = = [ @)1+ Sl A, (25)
with A the weight function given by
VaeRY, Auz) = [] |2s1nh(— )| 2R (2.6)
a€R+

which is W-invariant and

Vo eRY, Shg(z) = Y k(a)alg(raz). (2.7)

aER 4

Example 2.1. We consider for d = 1, the root system R = {£a«, +2a},
with @ = 2. Here Ry = {a,2a}, and the reflection group is W = Zy. We
denote by k the multiplicity function. The Cherednik operator Tf is defined
for f of class C! on R, and z in R\{0} by

T70) = 5+ (T + 280 ) () - () = #7(0) 29

with p* = k(a) + 2k(2a).
If we put k1 = k(a)+k(2a), k2 = k(2a), the operator TF takes the following
form

T f(2) = %f(l‘)ﬂkl coth(z) + kz tanh(2)) (f(z) - f(=2))—p"f (=), (2.9)

with pk = ki + ko.
2.3. The Opdam-Cherednik’s kernel

We denote by G’}\, A\ € C4, the eigenfunction of the operators Tk, j=12.,d.
It is the unique analytic function on R? which satisfies the differential-difference
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system

i ke oy ik - d
{ TJ’GA(@“) =iAGx(2), j=1,2,..d = €RY (2.10)

G%(0) =1
It is called the Opdam-Cherednik’s kernel.

Remarks 2.1. For k = 0, we have for all z € RY, G%(z) = /).

The functions G’f\ possess the following properties:
i) For all A € C%, the function x — G%(z) is of class C* on R%.
ii) For all z € RY, the function A — G5 (z) is entire on C%.

iii) For all z € R% and \ € C%, we have

GK(z) = G* 5 (x). (2.11)

iv) For all x € R? and \ € C¢, we have
GR(@)] < Gl (@)- (2.12)

v) For all z € R? and A\ € RY, we have
GE ()] < (W2, (2.13)

vi) Let p and ¢ be polynomials of degree m and n. Then, there exists a
positive constant M such that for all A € C* and z € R?, we have

’ J n — max m
|p(a)Q(%)G§‘(l‘)| < M1+ [lf[)™ (1 + [IA[D Féc(x)e axyew I (wA,x))
(2.14)
where
vz e R, Fl( Z Gl (wz) (2.15)

wGW

Example 2.2. We consider for d = 1, the root system R = {+«, +2a},
with a = 2, the reflection group W = Zs, the multiplicity function k, the
parameters ki,ko, and the Cherednik operator T 1]“ , given in Example 2.1.

The Opdam-Cherednik’s kernel is given by

(kl—é,kQ—%)(i) 1 d

k _ (k1—3 ka—12)
Vz e R,VA € C, Gi(z) = ¢, @ (x), (2.16)

i\ — pFdz A
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where gpf\a’b) (x) is the Jacobi function of index (a,b) given by

. I D .
(@)= 2R3 p+iA), 5(p—iA);a+ 1; —(sinh(2))?),

5(
with o) the hypergeometric function of Gauss and p =a + b+ 1.

3. The intertwining operator Vj
and its dual 'V},

Notation. We denote by
- £(R?) the space of C™-functions on RZ. Its topology is defined by the
semi-norms

an,x (@) = sup |[DFo(z)l,
|u|<n
€K
where K is a compact of R%, n € N, and

Hlul
DV = W o= (1 pa) € Nda | = Zuz

- D(R?) the space of C*®-functions on RY, with compact support. We have
RY) = | Du(RY),
a>0

where D, (R?) is the space of C*®-functions on R¢ with support in the closed
ball B(0,a) of center 0 and radius a. The topology of D,(R?) is defined by the
semi-norms

pn(¥) = sup [DFe(z)], neN.
0<|p|<n
z€B(0,a)

The space D(R?) is equipped with the inductive limit topology.
- S(RY) the classical Schwartz space on RY. Its topology is defined by the
semi-norms

Qun(f) = I (1+ |lz])|D* f (), n.leN.
z€R?

- S3(RY) the generalized Schwartz space of C*°-functions on R% such that
for ¢,n € N, we have

Poa(f) = SHP (1 + [l (Fg (2))HD" f (2)] < +oo,

z€R?
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where FJ(z) is the function given by the relation (2.15). It is topologized by
means of the semi-norms P, ;, n,l € N.

- D'(RY) the space of distributions on R?. Tt is the topological dual of
D(RY).

- &'(R?) the space of distributions on R? with compact support. It is the
topological dual of £(R?).

Definition 3.1. i) The intertwining operator Vj is the unique linear topo-
logical isomorphism from £(R?) onto itself satisfying the transmutations rela-

tions P
j
and the relation
Vi(9)(0) = ¢(0). (3.2)

ii) The dual tV}, of the operator V} is defined by the following duality relation

/ Vil ) (W)g(y)dy = / Vi(g) () () Aw (). (3.3)
Rd Rd
with f in D(R?) and ¢ in £(RY).

Proposition 3.1. i) The operator 'V}, is a linear topological isomorphism
from
-D(RY) onto itself,
-S3(R9) onto S(RY),
satisfying the transmutation relations

vy € RY, Wi((TF + S5 f)(y) = %tvk<f><y>, (3.4)

where S;-“ is the operator on D(R?) (resp. Sz(R?) ) given by the relation

(2.7).

ii) The dual th_l of the operator Vk_1 satisfies the following duality relation

[ v owsm A = [ Vi o@r@a  69)
R4 Rd

with f in D(RY) (resp. S3(R?)) and g in E(RY).
iii) For all f in D(R?) we have

Suppf C B(0,a) = Supp'Vi.(f) C B(0,a), (3.6)

where B(0,a) is the closed ball of center 0 and radius a > 0.
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Remarks 3.1. From the relations (2.3),(3.1),(3.4) we deduce that the
operators Vj and 'V{ are the identity operators.

4. The hypergeometric Fourier transform associated with the
Cherednik operators

Notation. For a > 0, we denote by PW (C%), (resp. PW(C?),) the spaces of
functions h which are entire on C? and satisfying
Vm €N, sm(h) = supyeca(1 4 |\ eI R(N)] < oo
(resp. Im € N, 0y, (h) = supycca(l + [[A]) "™ eI MR(N)| < 00.)
Their topologies is given by the semi-norms s,,, m € N, (resp. o,,,m € N).
- We consider the spaces PW (C?) (resp. PW(C?) ) of the entire functions

on C¢ which are rapidly decreasing (resp. slowly increasing) and of exponential
type. We have

PW (C%) = UguoPW(C%), (resp. PW(C?) = UgnoPW(C?),.
They are equipped with the inductive limit topology.

Definition 4.1. The hypergeometric Fourier transform ¥ is defined for
all function f in D(R?) (resp. S2(R%)) by

vaecd, HE(HON) = g [ ()G () Ag () dzz. (4.1)

Theorem 4.1. The hypergeometric Fourier transform H* is a topological
isomorphism from

- D(RY) onto PW (CY),

- S3(R%) onto S(R?).
The inverse transform (H*)~1 is given by

Ve RL (8 L(h)(z) = / hO)GE (—2)Cr (V) (4.2)
Rd
where for all A € C¢,
- For k € (0, 00)
. D(—i(A, &) + 3k(2) + k()L &) + k(%) + k() + 1)
Gd) = a!;{ T(—i(\ @) + 3D(§)T(E(N, &) + 3T($) + 1) ’
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with ¢ a normalising constant.
- For k =0,
Cr(\) = 1. (4.4)

Definition 4.2. The hypergeometric Fourier transform ¥ is defined for
S in &'(R?) by
VAeRY  HFS)(N) = (S, GE). (4.5)

Theorem 4.2. The transform H* is a topological isomorphism from
E'(RY) onto PW(CY).

5. The hypergeometric translation operator and its dual and the
hypergeometric convolution product associated with the
Cherednik operators

5.1. The hypergeometric translation operator and its dual

Definition 5.1. The hypergeometric translation operator 7;’“, z € RY, is
defined on &(R%) by

Vy e RLTE(F)() = (Vi) (Vi)y Vi ' (F)(@ + y))- (5.1)

Proposition 5.1. The operator T}, v € R, satisfies the following prop-
erties:

i) For all z € R?, the operator T, is continuous from £(RY) into itself.

i) For all f in £(RY) and z,y € RY, we have

T2 ()(0) = f(2), and T (f)(y) = T, (f)(@). (5.2)
iii) For all z,y € R%, and A € C%, we have the product formula
T2 (GY)(y) = GX()GX(y), (5.3)

where G’/{, the opdam-cherednick kernel given by (2.10).

Definition 5.2. For each x € R?, the dual of the hypergeometric transla-
tion operator TF, is the operator *T* defined on D(R?) (resp. S2(R%)) by

vy € RUTE(N)(Y) = (Vi)e (Vi Dy Vi) (y — ). (5:4)
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Proposition 5.2. We give in the following the properties of the operator
t7;k::
i) For all z € R?, the operator *T} is continuous from

- D(RY) into itself,

- S3(RY) into itself.
ii) The operator *TF, x € RY, is related to the operator T.F, = € R, by the
following relation

TH(0) W) F () Ax(y)dy = / g TE) () A(2)dz, (55)

R4 R4

with g in £(R?), and f in D(RY) (resp. Sz(R%)).
iii) For all f in D(R?) (resp. S2(R%)) and z € R?, we have

vA € REHE(CTE(S)(N) = GR@/H () (). (5.6)

Thus from the relation (4.2) we have

vy ERLITHNG) = | @GR (NN (5.7)

iv) For all f in D(R?) with support in the closed ball B(0,a) of center o
and radius a > 0, and = € R?%, we have

Supp' T3 (f) € B(0,a + [lz[). (5.8)
5.2. The hypergeometric convolution product

Definition 5.3. The hypergeometric convolution product f *; g of the
functions f, g in D(R?) (resp. S2(R?)) is defined by

Va e RS wg(o) = [ THO o) Ak (5.9

Proposition 5.3. The convolution product *j, satisfies the following prop-
erties:

i) For all f,g in D(R?) (resp. So(R?)) the function f ), g belongs to D(R?)
(resp. Sp(RY)).

i) For all f,g in D(R?) (resp. S2(R%)), we have

VA e RLHE(f #k g)(N) = HE(HNHF(9) (V). (5.10)
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iii) This convolution product is commutative and associative.
iv) For all f,g in D(R?) (resp. Sa(R%)), we have

Vie(f #x 9) = Vi) * "Vi(9), (5.11)

where * is the classical convolution product on R%.

6. The heat kernel associated to
the Cherednik operators

Definition 6.1. Let t > 0. The heat kernel pf(z,y) associated with the
Cherednik operators, is defined for all z,y € R%, by

pi(z,y) = /Rd e HINPHIIP) GF (1) GE (—y)Cr (M) dA. (6.1)

Notation. We denote by:
- Hj, the heat operator associated with the Cherednik operator given by

0
Hy =Ly — = — |17 6.2
k kT 5 1p" 1%, (6.2)
where £}, is the Heckman-Opdam Laplacian defined for f of class C? on R? by
d
Lif =Y (TH(F). (6.3)
j=1

- EF,t > 0, the fundamental solution of the operator Hy, given by

VzeRY,  EF(z)=pf(z,0). (6.4)

Proposition 6.1. i) For all t > 0, the function Ef belongs to Sa(R%).
ii) For all t > 0, we have

VA€ R HEEF(N) = e tUINPHIRIP) (6.5)
iii) The function (x,t) — EF(x) is strictly positive on R? x (0, 00).
iv) For all t > 0, we have

/Rd EF(x)Ap(x)dz = 1. (6.6)

v) We have
HyEF(z) =0, onR?% x (0,00). (6.7)
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Proposition 6.2. i) For allt > 0 and x € R?, the function y — p§(z,y)
belongs to Sy(RY).
ii) For all t > 0 and z,y € RY, we have

pi (2, y) = "T(EF) (). (6.8)

iii) The function p}(x,y) is strictly positive on R? x R? x (0, c0).
iv) For all t > 0 and x € R?, we have

/Rd P (2, y) Ap(y)dy = 1. (6.9)

v) For all y € RY, the function (x,t) — pf(x,y) satisfies
Hypt(z,y) =0, on R? x (0, 00). (6.10)

Remark 6.1. To give the new results of this paper, we consider a second
multiplicity function [ : R — [0,00[. We consider also the cherednik opera-
tors le», j = 1,2,...,d, the Opdam-cherednik’s kernel G%, the transmutation
operators V; and its dual 'V}, the hypergeometric Fourier transform H', the hy-
pergeometric translation operator 7;l and its dual t7;l, the fundamental solution
E! of the operator H; and of the heat kernel pl(z.y).

7. The Cherednik-Trimeéche’s transmutation operator Uy, and its

dual Uy,

Definition 7.1. The Cherednik-Trimeche’s transmutation operator Uy, is
defined on £(R%) by

Ve R Un(f)(x) = Vi o Vi (f) (). (7.1)

By using the properties of the transmutation operators V; and V; given in
Section 3, we obtain the following properties of the operator Uy;.

Theorem 7.1. i) For k =1, we have

Uy, = Id. (7.2)
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ii) The operator Uy, is the unique topological isomorphism from &(R%) onto
itself satisfying the condition

Una(£)(0) = £(0). (7.3)
iii) The inverse operator Uy, U is given for f in E(RY) by
Ve eRY Ug!(f)(@) = Vio Vi () (@) = Un(f)(@). (7.4)

iv) The operator Uy, satisfies for all f in £(RY) the following transmutation
relations

Ve eRY TF(Un(f) (@) = Un(Ti(f)) (), §=1,2,...,d. (7.5)

v) We have
Ve CLVazeR: Uy (G (z) = G(x). (7.6)

vi) We have
Un(1) = 1. (7.7)

Definition 7.2. The dual of the Cherednik-Trimeche’s transmutation
operator Uy is the operator Uy, defined on D(R?) (resp. S2(R%)) by

Vy € R Un(g)(y) ="V, o "Vil(g) (). (7.8)

The properties of the operator 'V, and 'V}, given in Section 3, imply the
following properties of the operator Uy,.

Theorem 7.2. i) For k =1, we have
‘U = Id. (7.9)
i) The operator Uy, is a topological isomorphism from D(RY) (resp. Sa(RY))
onto itself. iii) The inverse operator tUk_ll is given for g in D(R?) (resp.

Sy(R%)) by

VyeRY U N 9)(y) ="V, o "Vilg)(y) = "Ui(9)(y). (7.10)

iv) The operator ‘Uy,; satisfies for all g in D(RY) (resp. S(R?)) the following
transmutation relation

vy eR: U((TF + SHMY) = (T] + 85)(Unl9)(y)- (7.11)
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Proposition 7.1. The operators Uy and Uy, are related for f in £(R?)
and g in D(R?) (resp. So(R?) by the following duality relation

/ Una (1) ()9(x) A (2)dz: = / Wia(9) () () Au() dy. (7.12)
R4 R4

Corollary 7.1. The operators Uy, satisfys for all g in D(R?) (resp. So(R?)
the following expression:

VyeRY, "Wulg)(y) = (H) o HF(g)(y). (7.13)

Proof. From the relations (7.12),(7.6), we have
¥ A€ RLHN () () = H(‘Un(9)(V)-
We deduce (7.13) from this relation and Theorem 4.2. O

8. The Cherednik-Trimeéche’s translation operator and its dual

Definition 8.1. For z,y € R? the Cherednik-Triméche’s translation op-
erator T,* is defined for all f in £(R?) by

T (D) = VD2((Vi)y Vi () (@ + ). (8.1)

Definition 8.2. For all z,y € R%, the dual of the Cherednik-Trimeche’s
translation operator ‘T* is defined for all g in D(RY) (resp. So(R?)) by

T 9)(2) = (V) (Vi H:Valg) (2 — ). (8.2)

From the properties of the operator V;,V, and ‘V}, given in Section 3, we
obtain the following properties of the operators 7,* and *T*.

Proposition 8.1. i) For all f in £(R?), the function T (f)(y) is of class
C* on R? with respect to the variables x and y.  ii) For all g in D(R?) (resp.
So(R%)) the function *TF(g)(2) is of class R? with respect to the variables x,
and belongs to D(R?) (resp. Sy(RY)) with respect to the variable z. More
precisely if the support of g is contained in the ball of center 0 and radius
a >0, and = € R?, we have have

Supp' T (9)(2) € B(0,a+ ||z])), (8.3)
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iii) For all f in £(R?) and = € R?, we have
TH()(0) = Vio V7 (f) (@) (8.4)
iv) For all g in D(RY) (resp. S2(R%)) and z € R?, we have
"0 (9)(2) = g(2). (8.5)
v) For all z,y € R? and \ € C¢, we have
TGN (y) = GA(2)GR(y). (8.6)

Proposition 8.2. The operators T\ and 'T} are related for all f in
E(R?) and g in D(R?) (resp. S2(RY)) by the following duality relation:

TE) )9 (y) Aw(y)dy = " (2)' T (9)(2) Ar (2)dz. (8.7)

Rd

Corollary 8.1. For all v € R?, the dual *T}* of the Cherednik-Triméche’s
translation operator, satisfies for all g in D(RY) (resp. S3(R?)) the following
relations:

) YAER, H(TH(9)N) = GA@H (9, (88)
W) VzeR, 'TH(g)(2) = /R JAA@CA (=M@ NC(NdA. (8.9)

Proof. i) By applying thr relation (8.7) with f(z) = G5 (2),z € R%, X\ € R,
we obtain

A T ) Az = [ THE WAy

Rd

We deduce relation (8.8) from this relation and relations (8.6),(4.1).
ii) We deduce relation (8.9) from relations (8.8),(4.2),(2,14) and Theorem
4.2. O
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9. The Cherednik-Trimeéche’s convolution product

Definition 9.1. The Cherednik-Trimeche’s convolution product of the
functions f, g in D(RY) (resp. Sp(R?)) is the functionf x1; g defined by

VueRl fuug) = [ TUNWe@ AW 0)

Proposition 9.1. i) For all functions f,g in D(RY) (resp. So(R?)) the
function f *x; g belongs to D(R?) (resp. Sa(R?)).
i) For all f,g in D(R?) (resp. Sa(RY)), we have the following relations:

VAERY  HF(f o g)(N) = H (g £)(N), (9.2)
VAERY  H(f s g)(N) = HI(HNH (9)(N). (9.3)

Proposition 9.2. For all functions f,g in D(RY) (resp. S3(R?)), we have
Yy eRY Vilf i 9)(y) = Vilf) * Vilg) (), (94)

where * is the classical convolution product of functions on R?.

Proof. We deduce relation (9.4) from relations (9.1) and (8.2). O

10. The Cherednik-Trimeéche’s heat kernel

Definition 10.1. Forall z,y € R% and t € (0, 00), we define the Cherednik-
Trimeche’s heat kernel p}(z,y) by

Pt (z,y) = "THED) (), (10.1)
where Ef () is the fundamental solution of the operator Hy, given by the relation

(6.4).

Proposition 10.1. i) For all z € R%, ¢ € (0,00) and A € R?, we have
HEf () (1) = e INHIPID G ). (10.2)
i) For all z,y € R% and t € (0,00), we have
_ k
Ay = [ PP @G G (103)
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Proof. i) From the relations (10.1),(8.7) we have
V(1) € R? x (0,00), A € R, HE (pf (x,.)) (N) = GA(a)HE (BF) ().

We deduce relation (10.2) from relation (6.5).
ii) The relations (10.1), (10.2), (8.9) (8.10) imply relation (10.3).

Proposition 10.2. For x € R? and t € (0, 00), we have
vy €RY U (@, ) ) = e D@y (10.4)
Proof. From the relations (7.13),(10.2), we have for all y € R%,

Uk (pf (2, ) (y)

(HY) et IMP I I GL ()] (y)
_ eft(”pk”?,”pl”?) (Hl)fl [eft(II)\HQJrHPl||2)Gl)\(x)] (y)

By using the relation (4.2) we obtain for all y € RY,
U (P (2, ) (y) = et 1P =A%) /Rd e—t(llx\||2+llplIIQ)GI/\(Q;)Gl)\(_y)CZ()\)d)\.

Thus the relation (6.1) implies

vy e R, UL (oM (x, ) (y) = e P10 pl e ).

In coming papers we plan to study:

1. The Harmonic Analysis associated to the Cherednik-Trimeche’s trans-
mutation operators on R? in the W-invariant case.

2. Applications of the Harmonic Analysis associated to the Cherednik-
Trimeche’s operators on RY.
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