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j , T

l
j , j =
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1. Introduction

In [1] I. Cherednik has introduced a family of differential-difference operators
that nowadays bear his name. These operators play a crucial role in the the-
ory of Heckman-Opdam’s hypergeometric functions, which generalize the the-
ory of Harish-Chandra’s spherical functions on Riemmann symetric spaces (see
[2,3,4]).

We consider in this paper two Cherednik operators T k
j and T l

j , j = 1, 2, ..., d,

on R
d, associated to the multiplicity functions k, l ∈ [0,∞).
By using the Harmonic Analysis associated to the Cherednik operators (see

[2,3,4,5,6,7]), given in Sections 2,3,4,5,6, we define and study in the other
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sections the Cherednik-Trimèche’s transmutation operator Ukl and its dual
tUkl, the Cherednik-Trimèche’s translation operator τklx and its dual tτklx , the
Cherednik-Trimèche’s convolution product, the Cherednik-Trimèche’s heat ker-
nel pklt (x, y).

2. The Cherednik operators and their eigenfunctions

We consider Rd with the standard basis {ej ; j = 1, 2, ..., d} and the inner prod-
uct 〈., .〉 for which this basis is orthonormal.

2.1. The root system

Let α ∈ R
d\{0} and α̌ =

2

‖α‖2
α. We denote by

rα(x) = x− 〈α̌, x〉α, x ∈ R
d, (2.1)

the reflection on the hyperplan Hα ⊂ R
d orthogonal to α. For d = 1, we take

α = 2.

A finite set R ⊂ R
d\{0} is called a root system if rαR = R, for all α ∈ R.

For a given β ∈ R
d\ ∪α∈R Hα, we fix the positive subsystem R+ = {α ∈

R, 〈α, β〉 > 0}, then for each α ∈ R either α ∈ R+ or −α ∈ R+.

The reflections rα, α ∈ R, generate a finite group W ⊂ O(d), called the
reflection group associated with R. Let R

d
reg = R

d\∪α∈RHα be the set of

regular elements in R
d.

A function k : R → [0,+∞[ is called a multiplicity function, if it is invariant
under the action of the reflection group W . We introduce the index

γ = γ(R) =
∑

α∈R+

k(α). (2.2)

2.2. The Cherednik operators

The Cherednik operators T k
j , j = 1, 2, ..., d, on R

d associated with the reflection

group W and the multiplicity function k, are defined for f of class C1 on R
d

and x ∈ R
d
reg by

T k
j f(x) =

∂

∂xj
f(x) +

∑

α∈R+

k(α)αj

1− e−〈α,x〉
{f(x)− f(rαx)} − ρkj f(x), (2.3)
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where

ρkj =
1

2

∑

α∈R+

k(α)αj , and αj = 〈α, ej〉. (2.4)

The Cherednik operators form a commutative system of differential-diffe-
rence operators.

For f of class C1 on R
d with compact support and g of class C1 on R

d, we
have for j = 1, 2, .., d:

∫

Rd

T k
j f(x)g(x)Ak(x)dx = −

∫

Rd

f(x)(T k
j + Sk

j )g(x)Ak(x)dx, (2.5)

with Ak the weight function given by

∀ x ∈ R
d, Ak(x) =

∏

α∈R+

|2 sinh〈
α

2
, x〉|2k(α), (2.6)

which is W -invariant and

∀ x ∈ R
d, Sk

j g(x) =
∑

α∈R+

k(α)αjg(rαx). (2.7)

Example 2.1. We consider for d = 1, the root system R = {±α,±2α},
with α = 2. Here R+ = {α, 2α}, and the reflection group is W = Z2. We
denote by k the multiplicity function. The Cherednik operator T k

1 is defined
for f of class C1 on R, and x in R\{0} by

T k
1 f(x) =

d

dx
f(x) +

(

2k(α)

1− e−2x
+

4k(2α)

1− e−4x

)

(f(x)− f(−x))− ρkf(x) (2.8)

with ρk = k(α) + 2k(2α).
If we put k1 = k(α)+k(2α), k2 = k(2α), the operator T k

1 takes the following
form

T k
1 f(x) =

d

dx
f(x)+(k1 coth(x) + k2 tanh(x)) (f(x)− f(−x))−ρkf(−x), (2.9)

with ρk = k1 + k2.

2.3. The Opdam-Cherednik’s kernel

We denote by Gk
λ, λ ∈ C

d, the eigenfunction of the operators T k
j , j = 1, 2, .., d.

It is the unique analytic function on R
d which satisfies the differential-difference
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system
{

T k
j G

k
λ(x) = iλjG

k
λ(x), j = 1, 2, .., d, x ∈ R

d,

Gk
λ(0) = 1.

(2.10)

It is called the Opdam-Cherednik’s kernel.

Remarks 2.1. For k = 0, we have for all x ∈ R
d, Gk

λ(x) = ei〈λ,x〉.

The functions Gk
λ possess the following properties:

i) For all λ ∈ C
d, the function x 7→ Gk

λ(x) is of class C
∞ on R

d.

ii) For all x ∈ R
d, the function λ 7→ Gk

λ(x) is entire on C
d.

iii) For all x ∈ R
d and λ ∈ C

d, we have

Gk
λ(x) = Gk

−λ̄(x). (2.11)

iv) For all x ∈ R
d and λ ∈ C

d, we have

|Gk
λ(x)| ≤ Gk

iℑm(λ)(x). (2.12)

v) For all x ∈ R
d and λ ∈ R

d, we have

|Gk
λ(x)| ≤ |W |1/2. (2.13)

vi) Let p and q be polynomials of degree m and n. Then, there exists a
positive constant M such that for all λ ∈ C

d and x ∈ R
d, we have

|p(
∂

∂λ
)q(

∂

∂x
)Gk

λ(x)| ≤M(1 + ‖x‖)m(1 + ‖λ‖)nF k
0 (x)e

−maxw∈W Im〈wλ,x〉,

(2.14)
where

∀x ∈ R
d, F k

0 (x) =
1

|W |

∑

w∈W

Gk
0(wx). (2.15)

Example 2.2. We consider for d = 1, the root system R = {±α,±2α},
with α = 2, the reflection group W = Z2, the multiplicity function k, the
parameters k1,k2, and the Cherednik operator T k

1 , given in Example 2.1.
The Opdam-Cherednik’s kernel is given by

∀x ∈ R,∀λ ∈ C, Gk
λ(x) = ϕ

(k1−
1

2
,k2−

1

2
)

λ (x)+
1

iλ− ρk
d

dx
ϕ
(k1−

1

2
,k2−

1

2
)

λ (x), (2.16)
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where ϕ
(a,b)
λ (x) is the Jacobi function of index (a, b) given by

ϕ
(a,b)
λ (x) = 2F1(

1

2
(ρ+ iλ),

1

2
(ρ− iλ);α+ 1;−(sinh(x))2),

with 2F1 the hypergeometric function of Gauss and ρ = a+ b+ 1.

3. The intertwining operator Vk
and its dual tVk

Notation. We denote by
- E(Rd) the space of C∞-functions on R

d. Its topology is defined by the
semi-norms

qn,K(ϕ) = sup
|µ|≤n
x∈K

|Dµϕ(x)|,

where K is a compact of Rd, n ∈ N, and

Dµ =
∂|µ|

∂x
µ1

1 ...∂x
µd

d

, µ = (µ1, ..., µd) ∈ N
d, |µ| =

d
∑

i=1

µi.

- D(Rd) the space of C∞-functions on R
d, with compact support. We have

D(Rd) =
⋃

a>0

Da(R
d),

where Da(R
d) is the space of C∞-functions on R

d with support in the closed
ball B(0, a) of center 0 and radius a. The topology of Da(R

d) is defined by the
semi-norms

pn(ψ) = sup
0≤|µ|≤n
x∈B(0,a)

|Dµϕ(x)|, n ∈ N.

The space D(Rd) is equipped with the inductive limit topology.
- S(Rd) the classical Schwartz space on R

d. Its topology is defined by the
semi-norms

Qℓ,n(f) = sup
0≤|µ|≤n
x∈Rd

(1 + ‖x‖)ℓ|Dµf(x)|, n, l ∈ N.

- S2(R
d) the generalized Schwartz space of C∞-functions on R

d such that
for ℓ, n ∈ N, we have

Pn,l(f) = sup
0≤|µ|≤n
x∈Rd

(1 + ‖x‖)ℓ(F k
0 (x))

−1|Dµf(x)| < +∞,
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where F k
0 (x) is the function given by the relation (2.15). It is topologized by

means of the semi-norms Pn,l, n, l ∈ N.
- D′(Rd) the space of distributions on R

d. It is the topological dual of
D(Rd).

- E ′(Rd) the space of distributions on R
d with compact support. It is the

topological dual of E(Rd).

Definition 3.1. i) The intertwining operator Vk is the unique linear topo-
logical isomorphism from E(Rd) onto itself satisfying the transmutations rela-
tions

∀x ∈ R
d, T k

j Vk(g)(x) = Vk(
∂

∂yj
g)(x), j = 1, 2..., d, (3.1)

and the relation
Vk(g)(0) = g(0). (3.2)

ii) The dual tVk of the operator Vk is defined by the following duality relation
∫

Rd

tVk(f)(y)g(y)dy =

∫

Rd

Vk(g)(x)f(x)Ak(x)dx. (3.3)

with f in D(Rd) and g in E(Rd).

Proposition 3.1. i) The operator tVk is a linear topological isomorphism
from

-D(Rd) onto itself,
-S2(R

d) onto S(Rd),
satisfying the transmutation relations

∀y ∈ R
d, tVk((T

k
j + Sk

j )f)(y) =
∂

∂y
tVk(f)(y), (3.4)

where Sk
j is the operator on D(Rd) (resp. S2(R

d) ) given by the relation
(2.7).

ii) The dual tV −1
k of the operator V −1

k satisfies the following duality relation
∫

Rd

tV −1
k (f)(y)g(y)Ak(y)dy =

∫

Rd

V −1
k (g)(x)f(x)dx, (3.5)

with f in D(Rd) (resp. S2(R
d)) and g in E(Rd).

iii) For all f in D(Rd) we have

Suppf ⊂ B(0, a) ⇒ SupptVk(f) ⊂ B(0, a), (3.6)

where B(0, a) is the closed ball of center 0 and radius a > 0.
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Remarks 3.1. From the relations (2.3),(3.1),(3.4) we deduce that the
operators V0 and tV0 are the identity operators.

4. The hypergeometric Fourier transform associated with the

Cherednik operators

Notation. For a > 0, we denote by PW (Cd)a (resp. PW(Cd)a) the spaces of
functions h which are entire on C

d and satisfying

∀ m ∈ N, sm(h) = supλ∈Cd(1 + ‖λ‖)mea‖Imλ‖|h(λ)| <∞.

(resp. ∃m ∈ N, σm(h) = supλ∈Cd(1 + ‖λ‖)−mea‖Imλ‖|h(λ)| <∞.)

Their topologies is given by the semi-norms sm,m ∈ N, (resp. σm,m ∈ N).
- We consider the spaces PW (Cd) (resp. PW(Cd) ) of the entire functions

on C
d which are rapidly decreasing (resp. slowly increasing) and of exponential

type. We have

PW (Cd) = ∪a>0PW (Cd)a (resp. PW(Cd) = ∪a>0PW(Cd)a.

They are equipped with the inductive limit topology.

Definition 4.1. The hypergeometric Fourier transform Hk is defined for
all function f in D(Rd) (resp. S2(R

d)) by

∀ λ ∈ C
d, Hk(f)(λ) =

∫

Rd

f(x)Gk
λ(x)Ak(x)dx. (4.1)

Theorem 4.1. The hypergeometric Fourier transform Hk is a topological
isomorphism from

- D(Rd) onto PW (Cd),
- S2(R

d) onto S(Rd).
The inverse transform (Hk)−1 is given by

∀ x ∈ R
d, (Hk)−1(h)(x) =

∫

Rd

h(λ)Gk
λ(−x)Ck(λ)dλ, (4.2)

where for all λ ∈ C
d,

- For k ∈ (0,∞)

Ck(λ) = c
∏

α∈R+

Γ(−i〈λ, α̌〉+ 1
2k(

α
2 ) + k(α))Γ(i〈λ, α̌〉+ k(α2 ) + k(α) + 1)

Γ(−i〈λ, α̌〉+ 1
2Γ(

α
2 ))Γ(i〈λ, α̌〉+

1
2Γ(

α
2 ) + 1)

,

(4.3)
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with c a normalising constant.
- For k = 0,

Ck(λ) = 1. (4.4)

Definition 4.2. The hypergeometric Fourier transform Hk is defined for
S in E ′(Rd) by

∀ λ ∈ R
d, Hk(S)(λ) = 〈S,Gk

λ〉. (4.5)

Theorem 4.2. The transform Hk is a topological isomorphism from
E ′(Rd) onto PW(Cd).

5. The hypergeometric translation operator and its dual and the

hypergeometric convolution product associated with the

Cherednik operators

5.1. The hypergeometric translation operator and its dual

Definition 5.1. The hypergeometric translation operator T k
x , x ∈ R

d, is
defined on E(Rd) by

∀ y ∈ R
d,T k

x (f)(y) = (Vk)x((Vk)y[V
−1
k (f)(x+ y)]. (5.1)

Proposition 5.1. The operator T k
x , x ∈ R

d, satisfies the following prop-
erties:

i) For all x ∈ R
d, the operator T k

x , is continuous from E(Rd) into itself.
ii) For all f in E(Rd) and x, y ∈ R

d, we have

T k
x (f)(0) = f(x), and T k

x (f)(y) = T k
y (f)(x). (5.2)

iii) For all x, y ∈ R
d, and λ ∈ C

d, we have the product formula

T k
x (G

k
λ)(y) = Gk

λ(x)G
k
λ(y), (5.3)

where Gk
λ, the opdam-cherednick kernel given by (2.10).

Definition 5.2. For each x ∈ R
d, the dual of the hypergeometric transla-

tion operator T k
x , is the operator tT k

x defined on D(Rd) (resp. S2(R
d)) by

∀ y ∈ R
d,t T k

x (f)(y) = (Vk)x(
tV −1

k )y[
tVk(f)(y − x)]. (5.4)
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Proposition 5.2. We give in the following the properties of the operator
tT k

x :
i) For all x ∈ R

d, the operator tT k
x is continuous from

- D(Rd) into itself,
- S2(R

d) into itself.
ii) The operator tT k

x , x ∈ R
d, is related to the operator T k

x , x ∈ R
d, by the

following relation

∫

Rd

T k
x (g)(y)f(y)Ak(y)dy =

∫

Rd

g(z)tT k
x (f)(z)Ak(z)dz, (5.5)

with g in E(Rd), and f in D(Rd) (resp. S2(R
d)).

iii) For all f in D(Rd) (resp. S2(R
d)) and x ∈ R

d, we have

∀λ ∈ R
d,Hk(tT k

x (f))(λ) = Gk
λ(x)H

k(f)(λ). (5.6)

Thus from the relation (4.2) we have

∀y ∈ R
d, tT k

x (f)(y) =

∫

Rd

Gk
λ(x)G

k
λ(−y)H

k(f)(λ)Ck(λ)dλ. (5.7)

iv) For all f in D(Rd) with support in the closed ball B(0, a) of center o
and radius a > 0, and x ∈ R

d, we have

SupptT k
x (f) ⊂ B(0, a+ ‖x‖). (5.8)

5.2. The hypergeometric convolution product

Definition 5.3. The hypergeometric convolution product f ∗k g of the
functions f, g in D(Rd) (resp. S2(R

d)) is defined by

∀ x ∈ R
d, f ∗k g(x) =

∫

Rd

tT k
x (f)(y)g(y)Ak(y)dy. (5.9)

Proposition 5.3. The convolution product ∗k satisfies the following prop-
erties:

i) For all f, g in D(Rd) (resp. S2(R
d)) the function f ∗k g belongs to D(Rd)

(resp. S2(R
d)).

ii) For all f, g in D(Rd) (resp. S2(R
d)), we have

∀ λ ∈ R
d,Hk(f ∗k g)(λ) = Hk(f)(λ)Hk(g)(λ). (5.10)
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iii) This convolution product is commutative and associative.
iv) For all f, g in D(Rd) (resp. S2(R

d)), we have

tVk(f ∗k g) =
tVk(f) ∗

tVk(g), (5.11)

where ∗ is the classical convolution product on R
d.

6. The heat kernel associated to

the Cherednik operators

Definition 6.1. Let t > 0. The heat kernel pkt (x, y) associated with the
Cherednik operators, is defined for all x, y ∈ R

d, by

pkt (x, y) =

∫

Rd

e−t(‖λ‖2+‖ρk‖2)Gk
λ(x)G

k
λ(−y)Ck(λ)dλ. (6.1)

Notation. We denote by:
- Hk the heat operator associated with the Cherednik operator given by

Hk = Lk −
∂

∂t
− ‖ρk‖2, (6.2)

where Lk is the Heckman-Opdam Laplacian defined for f of class C2 on R
d by

Lkf =

d
∑

j=1

(T k
j )

2(f). (6.3)

- Ek
t , t > 0, the fundamental solution of the operator Hk given by

∀ x ∈ R
d, Ek

t (x) = pkt (x, 0). (6.4)

Proposition 6.1. i) For all t > 0, the function Ek
t belongs to S2(R

d).
ii) For all t > 0, we have

∀ λ ∈ R
d,Hk(Ek

t )(λ) = e−t(‖λ‖2+‖ρk‖2). (6.5)

iii) The function (x, t) → Ek
t (x) is strictly positive on R

d × (0,∞).
iv) For all t > 0, we have

∫

Rd

Ek
t (x)Ak(x)dx = 1. (6.6)

v) We have
HkE

k
t (x) = 0, on R

d × (0,∞). (6.7)
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Proposition 6.2. i) For all t > 0 and x ∈ R
d, the function y → pkt (x, y)

belongs to S2(R
d).

ii) For all t > 0 and x, y ∈ R
d, we have

pkt (x, y) =
tT k

x (E
k
t )(y). (6.8)

iii) The function pkt (x, y) is strictly positive on R
d × R

d × (0,∞).

iv) For all t > 0 and x ∈ R
d, we have

∫

Rd

pkt (x, y)Ak(y)dy = 1. (6.9)

v) For all y ∈ R
d, the function (x, t) → pkt (x, y) satisfies

Hkp
k
t (x, y) = 0, on R

d × (0,∞). (6.10)

Remark 6.1. To give the new results of this paper, we consider a second
multiplicity function l : R → [0,∞[. We consider also the cherednik opera-
tors T l

j , j = 1, 2, ..., d, the Opdam-cherednik’s kernel Gl
λ, the transmutation

operators Vl and its dual tVl, the hypergeometric Fourier transform Hl, the hy-
pergeometric translation operator T l

x and its dual tT l
x , the fundamental solution

El
t of the operator Hl and of the heat kernel plt(x.y).

7. The Cherednik-Trimèche’s transmutation operator Ukl and its

dual tUkl

Definition 7.1. The Cherednik-Trimèche’s transmutation operator Ukl is
defined on E(Rd) by

∀ x ∈ R
d, Ukl(f)(x) = Vk ◦ V

−1
l (f)(x). (7.1)

By using the properties of the transmutation operators Vk and Vl given in
Section 3, we obtain the following properties of the operator Ukl.

Theorem 7.1. i) For k = l, we have

Ukl = Id. (7.2)
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ii) The operator Ukl is the unique topological isomorphism from E(Rd) onto
itself satisfying the condition

Ukl(f)(0) = f(0). (7.3)

iii) The inverse operator U−1
kl is given for f in E(Rd) by

∀x ∈ R
d, U−1

kl (f)(x) = Vl ◦ V
−1
k (f)(x) = Ulk(f)(x). (7.4)

iv) The operator Ukl satisfies for all f in E(Rd) the following transmutation
relations

∀ x ∈ R
d, T k

j (Ukl(f))(x) = Ukl(T
l
j(f))(x), j = 1, 2, ..., d. (7.5)

v) We have

∀ λ ∈ C
d,∀ x ∈ R

d, Ukl(G
l
λ)(x) = Gk

λ(x). (7.6)

vi) We have
Ukl(1) = 1. (7.7)

Definition 7.2. The dual of the Cherednik-Trimèche’s transmutation
operator Ukl is the operator tUkl defined on D(Rd) (resp. S2(R

d)) by

∀ y ∈ R
d, tUkl(g)(y) =

tV −1
l ◦ tVk(g)(y). (7.8)

The properties of the operator tVk and tVl, given in Section 3, imply the
following properties of the operator tUkl.

Theorem 7.2. i) For k = l, we have

tUkl = Id. (7.9)

ii) The operator tUkl is a topological isomorphism fromD(Rd) (resp. S2(R
d))

onto itself. iii) The inverse operator tU−1
kl is given for g in D(Rd) (resp.

S2(R
d)) by

∀ y ∈ R
d, tU−1

kl (g)(y) =
tV −1

k ◦ tVl(g)(y) =
tUlk(g)(y). (7.10)

iv) The operator tUkl satisfies for all g in D(Rd) (resp. S2(R
d)) the following

transmutation relation

∀ y ∈ R
d, tUkl((T

k
j + Sk

j )f))(y) = (T l
j + Sl

j)(
tUkl(g)(y). (7.11)
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Proposition 7.1. The operators Ukl and
tUkl are related for f in E(Rd)

and g in D(Rd) (resp. S2(R
d) by the following duality relation

∫

Rd

Ukl(f)(x)g(x)Ak(x)dx =

∫

Rd

tUkl(g)(y)f(y)Al(y)dy. (7.12)

Corollary 7.1. The operators tUkl satisfys for all g in D(Rd) (resp. S2(R
d)

the following expression:

∀ y ∈ R
d, tUkl(g)(y) = (Hl)−1 ◦ Hk(g)(y). (7.13)

Proof. From the relations (7.12),(7.6), we have

∀ λ ∈ R
d,Hk(g)(λ) = Hl(tUkl(g))(λ).

We deduce (7.13) from this relation and Theorem 4.2.

8. The Cherednik-Trimèche’s translation operator and its dual

Definition 8.1. For x, y ∈ R
d, the Cherednik-Trimèche’s translation op-

erator T kl
x is defined for all f in E(Rd) by

T kl
x (f)(y) = (Vl)x((Vk)y[V

−1
k (f)(x+ y)]. (8.1)

Definition 8.2. For all x, y ∈ R
d, the dual of the Cherednik-Trimèche’s

translation operator tT kl
x is defined for all g in D(Rd) (resp. S2(R

d)) by

tT kl
x (g)(z) = (Vl)x(

tV −1
k )z [

tVk(g)(z − x)]. (8.2)

From the properties of the operator Vl, Vk and tVk given in Section 3, we
obtain the following properties of the operators T kl

x and tT kl
x .

Proposition 8.1. i) For all f in E(Rd), the function T kl
x (f)(y) is of class

C∞ on R
d with respect to the variables x and y. ii) For all g in D(Rd) (resp.

S2(R
d)) the function tT kl

x (g)(z) is of class R
d with respect to the variables x,

and belongs to D(Rd) (resp. S2(R
d)) with respect to the variable z. More

precisely if the support of g is contained in the ball of center 0 and radius
a > 0, and x ∈ R

d, we have have

SupptT kl
x (g)(z) ⊂ B(0, a+ ‖x‖), (8.3)
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iii) For all f in E(Rd) and x ∈ R
d, we have

T kl
x (f)(0) = Vl ◦ V

−1
k (f)(x). (8.4)

iv) For all g in D(Rd) (resp. S2(R
d)) and z ∈ R

d, we have

tT kl
0 (g)(z) = g(z). (8.5)

v) For all x, y ∈ R
d and λ ∈ C

d, we have

T kl
x (Gk

λ)(y) = Gl
λ(x)G

k
λ(y). (8.6)

Proposition 8.2. The operators T kl
x and tT kl

x are related for all f in
E(Rd) and g in D(Rd) (resp. S2(R

d)) by the following duality relation:

∫

Rd

T kl
x (f)(y)g(y)Ak(y)dy =

∫

Rd

f(z)tT kl
x (g)(z)Ak(z)dz. (8.7)

Corollary 8.1. For all x ∈ R
d, the dual tT kl

x of the Cherednik-Trimèche’s
translation operator, satisfies for all g in D(Rd) (resp. S2(R

d)) the following
relations:

i) ∀ λ ∈ R
d, Hk(tT kl

x (g))(λ) = Gl
λ(x)H

k(g)(λ), (8.8)

ii) ∀ z ∈ R
d, tT kl

x (g)(z) =

∫

Rd

Gl
λ(x)G

k
λ(−z)H

k(g)(λ)Ck(λ)dλ. (8.9)

Proof. i) By applying thr relation (8.7) with f(z) = Gk
λ(z), z ∈ R

d, λ ∈ R
d,

we obtain

∫

Rd

Gk
λ(z)

tT kl
x (g)(z)Ak(z)dz =

∫

Rd

T kl
x (Gk

λ)(y)g(y)Ak(y)dy.

We deduce relation (8.8) from this relation and relations (8.6),(4.1).
ii) We deduce relation (8.9) from relations (8.8),(4.2),(2,14) and Theorem

4.2.



THE HARMONIC ANALYSIS ASSOCIATED TO... 723

9. The Cherednik-Trimèche’s convolution product

Definition 9.1. The Cherednik-Trimèche’s convolution product of the
functions f, g in D(Rd) (resp. S2(R

d)) is the functionf ∗kl g defined by

∀ y ∈ R
d, f ∗kl g(y) =

∫

Rd

tT kl
x (f)(y)g(x)Ak(x)dx. (9.1)

Proposition 9.1. i) For all functions f, g in D(Rd) (resp. S2(R
d)) the

function f ∗kl g belongs to D(Rd) (resp. S2(R
d)).

ii) For all f, g in D(Rd) (resp. S2(R
d)), we have the following relations:

∀ λ ∈ R
d, Hk(f ∗kl g)(λ) = Hl(g ∗kl f)(λ), (9.2)

∀ λ ∈ R
d, Hk(f ∗kl g)(λ) = Hk(f)(λ)Hl(g)(λ). (9.3)

Proposition 9.2. For all functions f, g in D(Rd) (resp. S2(R
d)), we have

∀ y ∈ R
d, tVk(f ∗kl g)(y) =

tVk(f) ∗
tVl(g)(y), (9.4)

where ∗ is the classical convolution product of functions on R
d.

Proof. We deduce relation (9.4) from relations (9.1) and (8.2).

10. The Cherednik-Trimèche’s heat kernel

Definition 10.1. For all x, y ∈ R
d and t ∈ (0,∞), we define the Cherednik-

Trimèche’s heat kernel pklt (x, y) by

pklt (x, y) =
tT kl

x (Ek
t )(y), (10.1)

whereEk
t (x) is the fundamental solution of the operatorHk given by the relation

(6.4).

Proposition 10.1. i) For all x ∈ R
d, t ∈ (0,∞) and λ ∈ R

d, we have

Hk(pklt (x, .))(λ) = e−t(‖λ‖2+‖ρk‖2)Gl
λ(x). (10.2)

ii) For all x, y ∈ R
d and t ∈ (0,∞), we have

pklt (x, y) =

∫

Rd

e−t(‖λ‖2+‖ρk‖2)Gl
λ(x)G

k
λ(−y)Ck(λ)dλ. (10.3)



724 K. Trimèche

Proof. i) From the relations (10.1),(8.7) we have

∀(x, t) ∈ R
d × (0,∞), λ ∈ R

d,Hk(pklt (x, .))(λ) = Gl
λ(x)H

k(Ek
t )(λ).

We deduce relation (10.2) from relation (6.5).

ii) The relations (10.1), (10.2), (8.9) (8.10) imply relation (10.3).

Proposition 10.2. For x ∈ R
d and t ∈ (0,∞), we have

∀y ∈ R
d, tUkl(p

kl
t (x, .))(y) = e−t(‖ρk‖2−‖ρl‖2)plt(x, y). (10.4)

Proof. From the relations (7.13),(10.2), we have for all y ∈ R
d,

tUkl(p
kl
t (x, .))(y) = (Hl)−1[e−t(‖λ‖2+‖ρk‖2)Gl

λ(x)](y)

= e−t(‖ρk‖2−‖ρl‖2)(Hl)−1[e−t(‖λ‖2+‖ρl‖2)Gl
λ(x)](y).

By using the relation (4.2) we obtain for all y ∈ R
d,

tUkl(p
kl
t (x, .))(y) = e−t(‖ρk‖2−‖ρl‖2)

∫

Rd

e−t(‖λ‖2+‖ρl‖2)Gl
λ(x)G

l
λ(−y)Cl(λ)dλ.

Thus the relation (6.1) implies

∀y ∈ R
d, tUkl(p

kl
t (x, .))(y) = e−t(‖ρk‖2−‖ρl‖2)plt(x, y).

In coming papers we plan to study:

1. The Harmonic Analysis associated to the Cherednik-Trimèche’s trans-
mutation operators on R

d in the W -invariant case.

2. Applications of the Harmonic Analysis associated to the Cherednik-
Trimèche’s operators on R

d.
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