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Abstract: We extend the definition of h-blossoming, introduced by Simeonov,
Zafiris, and Goldman, to the trivariate polynomials and we define the h- Bézier
volumes. We derive a subdivision algorithm for h-Bézier volumes and illustrate
it on examples using Mathematica.
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1. Introduction and Summary

The classical Bernstein polynomials, Bézier curves, surfaces, and volumes have
found applications in many areas of numerical analysis, approximation theory,
computer aided geometric design, and various other fields of applied and com-
putational mathematics. The quantum g-analogues of Bernstein basis functions
were defined and studied by Orug and Phillips in [7]-[11], and their h-analogues
were introduced and explored by Stancu in [15, 16] and by Goldman and Barry
in [2, 3, 4]. For a survey of Bernstein polynomial basis, see [1] by Farouki, and
for Bézier volumes, we refer to [12] by Samueléik.

The quantum g¢- and h-blossoming was introduced by Simeonov, Zafiris, and
Goldman in [13, 14]. Its importance is in quantum blossoming representation
of quantum Bézier curves, surfaces, and splines, which is used to derive efficient
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764 I. Jegdi¢

algorithms for recursive evaluation, degree elevation, subdivision, and other
identities and properties. Some of these identities and properties were derived
using mathematical induction in [6] by Jegdi¢, Larson, and Simeonov.

In this paper we extend the univariate h-blossoming defined by Simeonov,
Zafiris, and Goldman in [13]. Its two-dimensional version was studied in [5]
by Jegdi¢. The paper is organized as follows. In §2 we define trivariate h-
Bernstein basis functions and h-Bézier volumes, and we show the effect of the
parameter h on an example. We use the recurrence relations for h-Bernstein
basis functions to derive an analogue of the de Casteljau evaluation algorithm.
In §3 we define ﬁ—blossoming, we derive recursive evaluation algorithms, and
we state several results regarding i_i—blossoming and h-Bézier volumes. In 84
we derive a subdivision algorithm for h-Bézier volumes and we illustrate it on
examples using Mathematica.

2. Definition of h-Bézier Volumes

We recall the definition of the h-Bernstein basis functions over an interval [a, 0]

Ml —a+ i) [ Yo —t+i
R

9

k=0,...,n, where the parameter h is such b—a+ih #0foralli=0,...,n—1.

Definition 1. The trivariate -Bernstein basis functions of degree m in
t1, n in ty, and p in t3, over a rectangular solid S := [a,b] X [¢,d] X [e, f], with
h = (h1,ha, h3) € R3, are given by

BIVP (b by, 133 S; h) 1=
B (t1; [a, b]; h1) By (ta; [c, d]; ho) Bf (t3; [e, f1; hs),
where j =0,...,m, k=0,...,n,and [ =0,...,p, and the parameter h is such

that b—a+ahy # 0 (fora =0,...,m—1), d—c+Shs #0 (for  =0,...,n—1),
and f —e+~yhs #£0 (fory=0,...,p—1).

We use the recurrence relations of the h-Bernstein basis functions, as in [5]
and [13], to obtain the following relations in the trivariate case:

Booo(ty, t2, t5:8:h) = 1,
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andif j=1,....m—1,k=1,....n—1,and [ =1,...,p— 1, we have

m—1,n—1,p—1 m—1,n—1,p—1
Bjk}l (tl,tg,tgﬂs h) E1><B k1,1 —‘FEQXB] LE—1,
m—1n—1,p—1 m—1n—1,p—1
+ By x BTV 4 By x Bl

m—1,n—1,p—1 m—1,n—1,p—1
+Es x By 1 +Ee x B\ 1,

m—1,n—1,p—1 m—1,n—1,p—1
+E7><B]kll +E8XB]kl ,

where the polynomials on the right hand side are in variables 1, t9, and t3,
over §, with respect to parameter h, and the expressions FEy,..., EFg are given
by
tl—a+(j—1)h1 t2—6+(1€—1)h2t3—6+(l—1)h3
b—a+(m—1hyd—c+ (n—1)hy f—e+ (p—1)hs’

tl—(I—l-(j—1)h1t2—C+(l€—1)h2f—t3+(p—l—1)h3
b—a+(m—1hid—c+(n—1hy f—e+(p—1)hs
tl—a—i-(]—l)h d—to+(n—k—1)hots—e+ (I —1)hg
b—a+(m—-1h d—c+(n—1hy f—e+(p—1)hs’
ti1—a+(G—1hd—tao+(n—k—1has f—ts+(p—1—1)hs
b—a+(m—1)hy d—c+(n—1)hs f—e+(p—1)hs
b—tl+(m—j—1)h1t2—C+(k—1)h2t3—€+(l—1)h3
b—a+(m—-1)h d—c+(n—1)hy f—e+ (p—1)hs’
b—tl+(m—j—1)h1t2—C—l-(k—l)hgf—tg-l-(p—l—l)hg
b—a+(m—1h d—c+(n—1hy f—e+(p—1)hs
b—t1+(m—j—1)h1d—t2—|—(n—k‘—1)h2t3—e+(l—1)h3
b—a+(m—1)h d—c+(n—1hy f—e+(p—1)hs’
b—ti+(m—j—1Dhid—ta+(n—k—1ho f—t3+(p—1—1)hs
b—a+(m—1)h d—c+ (n—1)hsy f—e+(p—-1hs ’

respectively.

Definition 2. The h-Bézier volume of degree m in t1, n in to, and p in t3,
over a solid S := [a,b] x [¢,d] x [e, f], where h := (h1, ha, h3) € R3, with control
points Pjr;, 7 =0,...,m, k=0,...,n,and [ = 0,...,p, is defined by

m p
P(t1,ta,13) Z ZPJMBJM (t1,t2,t3;S; h).
=0 k=0 1=0

n
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Example 3. We investigate the effect of the parameter h on an h-Bézier
volume that is linear in ¢1, quadratic in t5, and linear in t3. The control points
are set to

Po,0,0(0,0,0) Py1,1(0,1/2,1)  P1p0(1,0,0) Pr11(1,1/2,1)
Po01(0,0,1) Py2o(—1,1,0) P1o1(1,0,1) P120(0,1,0)
Py1,0(0,1/2,0) FPyoa(—1,1,1) Pi10(1,1/2,0) P121(0,1,1)

implying Py (tl, to, t3) = tl_;— tg(tQ —I—hg)/(l—l—hg), Pg(tl, to, t3) = to, and Pg(tl, to,
t3) = t3. Since the given h-Bézier volume is linear in ¢; and in t3, P(t1,12,13)
depends only on the parameter hs. In Figure 1 we plot P(t1, t9, t3) for he taking
values of 0, 0.29, 2.01, and 1000.21, respectively.

Figure 1: The effect of the parameter h.

Using the above recurrence relation, we derive the h-de Casteljau evaluation
algorithm as follows. Define
0,0,0 _
P (tta,ts) = Pk,
forj=0,...,m, k=0,....,nyand [ =0,...,p. fa=1,....m,=1,...,n,
and v =1,...,p, define recursively

o, B,y _ a—1,8—1,7-1 a—1,8—1,7-1
Pid (tistayts) = Ex X Py + By X Piiy i

a717ﬂ717'}/71

a717ﬂ717'}/71
+ B3 X Pyiiy + By X Py

a717ﬂ717'}/71 a717ﬂ717'}/71
+Es X Py +Be X Py ki
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a—1,8—1,7-1 a—1,8—1,7-1
T Er X P B X P i

forj=0,...,m—a,k=0,...,n—0F,and [ =0, ...,p—, where the expressions
Fh, ..., Eg are given by
b—ti+(m—j—a)hyd—to+(n—k—pP)ha f—ts+ (p—1—")hs
b—a+ (m—a)h d—cH+ (n—p)hy f—e+(p—")hs
tl—a—i—jhl d—tg+(n—k—ﬁ)h2f—t3+(p—l—’y)h3
b—a+(m—a)hy d—c+ (n—pB)hy f—e+(p—"7)hs
b—t1+(m—j—a)h1 t2_c+kh2 f—tg—l-(p—l—’y)hg
b—a+(m—a)hy d—c+(n—pFhy f—e+(p—7)hs
tr—a+jh to—c+khy f—t3+(p—1—7)hs
b—a+(m—a)hd—c+(n—PBhy f—e+(p—7)hs
b—t1+(m—j—a)h1d—t2+(n—k—ﬁ)h2 t3—€+lh3
b—a+ (m—a)h d—c+(n—PBhy f—e+(p—")hs
t1 —a+ jhy d—to+ (n—k— B)ho ts — e+ Lhs
b—a+(m—a)hy d—c+(n—PpFhy f—e+(p—7)hs’

b—t1+(m—j—a)h1 t2—C+k‘h2 t3—€+lh3
b—a+(m—a)hy d—c+(n—PB)haf—e+ (p—"7)hs’
tl—a+jh1 t2—0+kh2 t3—€+lh3

b—a+(m—a)hd—c+(n—PB)hy f—e+(p—7)hs’

respectively. It is easily shown by induction on m, n, and p that

Pglo (tista, t3) = P(ty, ta, t3).

3. Definition of H—Blossoming
for Trivariate Polynomials

In this section we define an h-blossom for polynomials in three variables.

Definition 4. Given a polynomial P(t,t9,t3) of degree m in t1, n in to,
and p in t3, the h-blossom of P(ty,ts,t3), where h = (hi,ha,h3) € R3, is a
polynomial

—

P(UL, .oy U3 VT, e Up W, - ., Wps h)

which satisfies the following properties
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e symmetry: for any permutations oy, o9, and o3 of the sets {1,...,m},
{1,...,n}, and {1,...,p}, respectively,

-

PUL, - UV, e, U W, .., W )

= p(”oj(l)) <y Uy (m)s Voa(1)s - -+ 5 Voa(n)s Was(1)s - -+ » Was(p)s h))

o multi-affine:

—

plut, ..., (1 — @)ug + Qup, ..., Ui V1, .o U3 W1, .., Wy h)
= (1—a)p(ul,...,uk,...,um;vl,...,vn;wl,...,wp;i_i)
+ap(u1,...,u§€,...,um;vl,...,vn;wl,...,wp;i_i),
p(ul,...,um;’ul,...,(l—ﬁ)vk—I—ﬁvfm...,vn;wl,...,wp;l_i)
= (1—ﬁ)p(ul,...,um;’ul,...,vk,...,vn;wl,...,wp;ﬁ)
—i—ﬁp(ul,...,um;vl,...,vk,...,vn;wl,...,wp;ﬁ),
and

P(ULy ooy U VL, e ey U W0, ey (1 — ) wg +'yw§€,...,wp;fz)
= (1—'y)p(ul,...,um;vl,...,vn;wl,...,wk,...,wp;l_i)
+’yp(u1,...,um;vl,...,vn;wl,...,w;,...,wp;l_i),

° }_i—diagonal:

ptr, ..ty — (m = Dhaste, ... t2 — (n— 1)hg;

t3,...,t3 — (p — D)has h) = P(t1,ta,t3).

The following three-dimensional results follow in the same way as the one-
dimensional results in [13] and two-dimensional results in [5]. For convenience,
we state them here.

Theorem 5. (Existence and uniqueness of the E—blossom)
For every polynomial P(ty,t2,t3) of degree m in t1, n in ts, and p in t3, there
exists a unique h-blossom

—

P(ULy oy U VL, - o Upy W, - . Whs R).
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Theorem 6. (E-Recursive evaluation algorithms)
Let P(ty1,to,t3) be a polynomial of degree m in ty, n in to, and p in t3, with
h-blossom PUL, -y U3 V15 e ey Un W - - W E) There exist m!nlp! affine in-
variant, recursive evaluation algorithms for P(tq,ts,t3) defined recursively as
follows. Let 01,09, and o3 be permutations of {1,...,m}, {1,...,n}, and
{1,...,p}, respectively. Define

PR =pla—jhi,...,a = (m—1hy,bb—hy,....b—(j — 1hy;

C—khg,...,c—(n—l)hg,d,d—hg,...,d—(k—1)h2;

—

6—”137...76—(])—].)hg,f,f—hg,...,f_(l_l)hg;h),
where j = 0,...,m, k = 0,...,n, and l = 0,...,p. For a = 0,...,m — 1,
68=0,....n—1,and y=0,...,p— 1, define recursively

1B+1,7+1
P PEET (1 19, 13)

= (1= A ) (1= Bg ) (1 = Cy ) P (t1, o, 1)
+ Aaj(1 = Bag)(1 — Co ) PT (b, b, t3)

Jt+1.k
+ (1= Aaj)Ba (1 — Co )P (t o, ts)
+ Ao By k(1= Co )P (b, ts)
+ (1 - Aaj)(1 - Bﬂ,k)cv,lpﬁl;%zl(tb to, t3)
+ Aaj(1 = By ) CoaPRT i (s o, 1)
+ (1= Aag) BorCoa P 1 (2, 8)

+ AajBpiC JP]iﬂl’,ZJrl,lJrl(tl’ ta, t3),
where j =0,.... m—a—1,k=0,....,.n—pF—1,andl =0,...,p—~— 1. Here,

_tl—a—(al(j—l—l)—l—a—j)hl

A, =
e b—a—l—jh1 ’
B _tQ—C—(Ug(k-i‘l)—l—ﬁ—k)hg
k8= d—c+ khy ’
and
ts—e—(o3(l+1)—1—79—1Dhg
Ciy= .

f—€+lh3
Then for a =0,...,m, 8 =0,...,n,and vy=0,...,p, we have

Pjof;;’?l’v(tly ta,t3) =
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p(a_(a+j)hla"'7a_ (m_l)h17b>b_h1"'7b_ (j_l)h‘h
t1 — (01(1) = Dhy,...t1 = (o1(a) = 1hy;

c— (B4 Khay ... c— (n—Dhoydyd — hoy ... d— (k —1)ho,
ts — (03(1) = Dha, - .- s — (02(8) — 1)ho

e~ (v+Dhayeorve—(p—ha, fr f —hayeoos f — (1= 1)ha,
ts — (03(1) = Dhs, ... t3 — (03(y) — 1)ha; h),

where j =0,...,m—a, k=0,....n—f,and [ =0,...,p—~. In particular,

P&%’p(tl,tg,tg) = p(tl — (01(1) — 1)h1, oyt — (al(m) — 1)h1;
tg—(o‘g(l)—l)hg,..., ( ( ) )h27
)

ts — (03(1) — 1)hs, ... t3 — (03(p) — 1)hs; h)
= P(t1,t2,13).

The next result shows that every polynomial volume is an h-Bézier volume
over any solid.

Theorem 7. Let P(t1,t2,t3) be a polynomial of degree m in ti, n in to,
and p in t3, with h-blossom

—

P(ULy oy U VL, - oy Up W, - . Wps R).

Then

n

m p
tlatQ)t?) Z Z

§=0 k=0 1=0
pla —jhi,...,a— (m —1)h1,b,b—hy,...,b—(j — 1)hy;
¢c—khy,...,c—(n—1)he,d,d—ho,...,d—
e—1lhs,...,e—(p—Vha, f, f —ha,...,f — (1= 1)hz; h)
X B;lk’?p(tl,tg,tg; [a,b] % [e,d] x [e, f]; )

Theorem 8. (Dual Functional Property of the h-blossom)
Let P(t1,t2,t3) be an h-Bézier Volume of degree m in t1, n in ts, and p in ts, over
a solid [a, b] x [c, d] x[e, f] with h-blossom p(u1, ..., Up; V1, - .., Up; W1, - - . wp,h).
Then the h-Bézier control points of P(ty,ts,t3) are given by

-Pj,k,l:p(a_jhla"'7a_(m_1)h17b7b_h17"'7b_(j_l)hl;
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C—k‘hg,...,c—(’n—1)h2,d,d—h2,...,d—(k‘—l)hg;

e—lh3,...,€—(p—1)h3,f,f—h3,...,f—(l—l)h3;h),

where 7 =0,....,m, k=0,....,n,and [ =0,...,p.

Theorem 9. Let P(t1,t2,t3) be an h-Bézier volume of degree m in t1, n in
to, and p in ts, over [a, b] x [c, d] x [e, f], with control points {Pj }, 7 =0,...,m,
k=0,...,n,and [ = 0,...,p. Let Pﬁ,ﬁ’ﬂ’, a=0,....m, =0,...,n, v=
0,...,pandj=0,.... m—a,k=0,...,n—0,andl =0,...,p—-, be the nodes
in the h-evaluation algorithm for P(ty,ts,t3) for the identity permutations.
Then

a B v
PR (bt ts) = DD Y Piirkrgits

r=0 q=0 s=0
« BB (t1 + jha,to + khasts + lha; [a, 0] x [e,d] X [e, f]; ﬁ) .

T7q78

4. A Subdivision Algorithm for
h-Bézier Volumes

We present an analogue of the de Casteljau subdivision algorithm and we illus-
trate it on examples using Mathematica.

Theorem 10. Let {Pj;;},j=0,...,m,k=0,...,n,andl =0,...,p, be
the control points of an h-Bézier volume P(tq,to,t3) of degree m in t1, n in to,
and p in t3, over a solid S := [a, b] X [c,d] x [e, f]. Let p(u1, ..., Um;V1,. .., Vw1,
...,wp;ﬁ) be the h-blossom of P(t1,to,t3) and let © € (a,b), y € (c,d), and
z € (e, f) be fixed.

e A control polygon for the volume P(t1,ts,t3) over [a,x] X [c,y] X [e, z] is
generated by selecting o1(j) = 7, 7 =1,....,m, o9(k) =k, k =1,...,n, and
o3(l)=1,1=1,...,p, in Theorem 6. Then

n p
P(tl)tQ)t?)) = ZZP][,/If:ZI/BT]éZ7p(t17t2)t37 [a7aj] X [07 y] X [evz];h))

where

Py =pla—jhy,...,a—(m—1hy,z,2 —hi,...,z = (j — 1)hq;
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c¢c—kho,....c—(n—1ho,y,y —ho,...,y — (k — 1)ho;
e—lh3,...,e—(p—l)h3,z,z—h3,...,z—(l—l)hg;f_i),

7=0,....m, k=0,...,n,andl =0,...,p. Moreover,

ZZZPWBZ;W y, 281 h).

a=04=0~=0

e A control polygon for the volume P(t,t9,t3) over |a,x] X [y,d] X [e, z] is
generated by selecting o1(j) =j,j=1,....,m,o09(k)=n+1—-k, k=1,....n
and o3(l) =1,1=1,...,p in Theorem 6. Then

m n
Pltrtnts) =305 PEREBT (0, 1yt [a.a] x y.d] x [e. 1 ).
7=0 k=0 1=0

where
P]L,flL— (a—jhi,...,a—(m —1hy,xz,2 —hy,...,z— (§j — 1)hy;
y—khg,...,y—(n—1)h2,d,d—h2,...,d—(k—l)hg;
e—lhg,...,e—(p—l)h3,z,z—h3,...,z—(l—l)hg;ﬁ),

7=0,....m, k=0,...,n,andl =0,...,p. Moreover,
PLRL k.l >
Py —ZZZPMV By i (w,y. 2S5 h).
a=0 8=k =0

e A control polygon for the volume P(t,to,t3) over [z,b] X [c,y] X [e, z] is
generated by selecting o1(j) =m+1—j4,j=1,... m,o9(k) =k, k=1,....,n
and o3(l) =1,1=1,...,p in Theorem 6. Then

P(tlth)t?)) = Z ZP B;n]g?’p(tlat27t3; [.’L‘,b] X [07 y] X [evz];}_i))

j],{kl:lL :p(x_jhlu7$_(m_]‘)h17b7b—h177b_(j_1)h1;
¢c—kho,...,c—(n—1ho,y,y —ha...,y — (k—1)ho;
e—lhg,...,e—(p—1)h3,z,z—h3...,z—(l—l)hg;ﬁ),
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7=0,....m, k=0,...,n,andl =0,...,p. Moreover,

P =303 R B 5T

a=j f=0~v=0

e A control polygon for the volume P(ty,ts,t3) over [x,b] X [y,d] x [e, z] is
generated by selecting o1(j) = m+1—7j,j=1,....m, o2(k) =n+1—k,
k=1,...,n,and o3(l) =1,1 =1,...,p, in Theorem 6. Then

m n P
P(ty,ty,ts) = > > Y PREEBTP (1, g, b5 [,] X [y,d]  [e, 2]; h),
7=0 k=0 =0

where
i =p(e = jhi,. .o = (0= Dhibyb =y b= (5 = D
y—k‘hg,...,y—(n—l)hg,d,d—hg,...,d—(k‘—l)hg;
e—lh3,...,e—(p—l)hg,z,z—hg,...,z—(l—l)hg;i_i),
7=0,....m, k=0,...,n,andl =0,...,p. Moreover,
m n l
k,l 7
PIRE =220 Papa Bl 5o @y, 2 Sih).
a=j =k y=0

e A control polygon for the volume P(t1,t2,t3) over [a,z] X [¢,y] X [z, f] is
generated by selecting o1(j) = 7, j = 1,...,m, oa2(k) =k, k =1,...,n, and
os(l)=p+1—1,1=1,...,p, in Theorem 6. Then

P(t1,t2,t3) = ZZZ ik LRBTkT;’p tr,to, b33 [a, 2] X [e, 9] % [2, fl; ),

PJLk.LlR =p(a — jhi,...,a— (m —1Vhy,z,x — hy,...,x — (j — 1)hy;
¢c—khy,...,c—(n—1ho,y,y — ho,...,y — (k — 1)hg;
z—lhg,...,z—(p—Vhsg, f, f —hs,...,f — (= 1)hs; k),

7=0,....m, k=0,...,n,andl =0,...,p. Moreover,

j k »p
Jk,p—1 . Q. 7
el =020 Papa BUE (0,5 81 h).

a=0 =0 y=I



774 I. Jegdi¢

e A control polygon for the volume P(ty,t2,t3) over [a,x] X [y,d] x [z, f] is
generated by selecting o1(j) =j,j=1,...,m,09(k) =n+1—-k, k=1,...,n
and o3(l) =p+1—1,1=1,...,p in Theorem 6. Then

m n

P(ty,tg,t3) = Z LRRBTkT}p(tl,tmt?); la, 2] x [y, d] x [z, f]; h),
=0 k=0 1=0

where
PLRlR—p(a—jhl,...,a—(m—1)h1,1‘,1‘—h1,...,x—(j—l)hl;
y—kho,...,y — (n—1)hg,d,d — ho,...,d — (k — 1)hg;
z—1lhs,...,z—(p—Dhg, f, f —hs, ..., f — (= 1)hs; ),
7=0,....m, k=0,...,n,andl =0,...,p. Moreover,

LRR R k,
Pjii —ZZZPM,WB% oh i@,y 2 S h).

a=0 8=k y=I

e A control polygon for the volume P(ty,t2,t3) over [z,b] x [c,y] X [z, f] is
generated by selecting o1(j) =m+1—j4,j=1,... m,o9(k) =k, k=1,...,n
and o3(l) =p+1—1,1=1,...,p in Theorem 6. Then

m n
P(t1,t2,t3) ZZZPJRkLﬁBﬁT}p(thtmtB; [, b] % [e,y] % [z, f1; h),

7=0 k=0 [=0
where
PR =p(x — jha, ... ;o — (m = Dha,b,b — by, ..., b— (j — 1)ha;
c¢c—kha,...,c—(n—1Dho,y,y —ho...,y — (k — 1)ho;
z—1lhs,...,2—(p—Dhsg, f, f —hs, ..., f — (I —1)hs; ),
7=0,....m, k=0,...,n,andl =0,...,p. Moreover,

Jkop—l1 . Q.7
Pt = ZZZPamBZ (@, y, 2 S5 h).

a=j =0 y=l

e A control polygon for the volume P(t1,to,t3) over [x,b] X [y,d] X [z, f] is
generated by selecting o1(j) = m+1—73,j=1,....m, o2(k) =n+1—k,
k=1,...,n,and o3(l) =p+1—1,1=1,...,p, in Theorem 6. Then

m
tl)t2)t3 Z

7=0k

P
ZPRRRB]mk?p t1,to, t3; [, 0] % [y,d] x [z, f]; h),

]7
01=0

n
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where

PR =p(x — jh1,...;x = (n = Dhy,bb— by, b — (= Dhy;
y—k:hg,...,y—(n—1)h2,d,d—h2,...,d—(k—l)hg;
Z—lhg,...,Z—(p—l)hg,f,f—hg,...,f_(l_1)h3;ﬁ),

7=0,....m, k=0,...,n,andl =0,...,p. Moreover,

J7kl ZZZP‘J‘BW (T ]{bn:k]ff:ll(x7y7z;3; }_i)

a=j =k y=I

Example 11. We consider an h-Bézier volume linear in t1, quadratic in
to, and linear in t3, with control points given in Example 3 and with hs = 0.29,
implying P (t1,t2,t3) = t1 — 0.224806t — 0.77519415%, PQ(tl,tQ,tg) = t9, and
Ps(ty1,ta,t3) = t3. In Figure 2 we plot this h-Bézier volume, and in Figure 3 we
plot the control points from the first three iterations of the midpoint subdivision
algorithm.

Figure 2: The h-Bézier volume from Example 11.

Example 12. Consider an h-Bézier volume, linear in ¢;, quadratic in to
and linear in t3, with control points

Py0,0(0,0 0) Py1,0(0,1/2,0) Py20(—1,1,0)
Poo1(0,-1,1) Po11(0,-1/2,1) FPyo1(—1,0,1)
P100(1,0 0) Pr10(1,1/2,0) P150(0,1,0)
Pioi(1,-1,1) P111(1,-1/2,1) Pi21(0,0,1).

Then P(ty,t9,t3) depends only on he and we let hy = 0.25 which gives Py (1, to,
tg) = tl - 0.2t2 - 0.815%, Pg(tl,tg,tg) = tg - t3, and Pg(tl,tg,tg) = t3. We plOt
this h-Bézier volume in Figure 4 and in Figure 5 we plot the control points from
the first three iterations of the midpoint subdivision algorithm.
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Figure 3: The control points from the first, second and the third
iterations of the midpoint subdivision algorithm for Example 11.

Figure 4: The h-Bézier volume from Example 12.
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