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1. Introduction

function function .
. explanation
notation arguments
analytical solution for the hyperbolic
U x,Yy,t .
equation (1), (2)
U vy analytical solution for the elliptic equation
3)
_ _ analytical solution for the Laplace equation
v T, Y, T .
(8) (Section 3 only)
-~ SR analytical solution for the elliptic system
v.w i (15) after variable change (14)
~ R analytical solution for the elliptic system
v,w nor (16), (17) after fixing U = U /0

2. Introduction

In this paper we consider stationary solutions (solutions of type u(z,y,t) =
U(x,y — ct)) to the two dimensional Boussinesq Paradigm Equation (BE)

g — Au — B1Auy + BoAu + Af(u) =0 for (z,y) € R* te RT, (1)

u(m,y,O) = UO(:C?y)v ut(fc,y,O) = ul(x,y) for (as,y) € R27 (2)

u(z,y) = 0, Au(z,y) — 0, for /22 +y? — oo,

where f(u) = au?, a > 0, B; > 0, B2 > 0 are dispersion parameters, and A is
the Laplace operator.

A derivation of the BE from the original Boussinesq system with discussion
on the different mechanical properties could be found e.g. in [1].

The one-dimensional (1D) BE is famous with its approximation for long
waves propagating in shallow water [2, 3]. Furthermore, 1D BE admits localized
wave solutions (called solitons),

Ut — Ugy — /Bluxxtt + 52uxxxx + f(u)xx = 07
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which maintain shape and emerge unchanged from collisions with other travel-
ing waves, appear to be a very suitable model for particles [4, 5]. Let us find a
stationary, traveling in y direction with phase velocity ¢, wave solution to the
2D BE, i.e. a solution to (1), (2) of type u(x,y,t) = U(x,y — ct). The waves U
satisfy the nonlinear fourth order elliptic equation:

A(E — B1AYU,, = AU — B AU — Af(U), (3)

where F is the identity operator. If the condition ¢ < min(1/y/3,1), with
B = B1/P2 holds, then (3) is an elliptic equation of fourth order and the linear
second order derivatives in (3) form a second order elliptic equation. Only
velocities ¢ which fulfill this inequality are considered.

The main goal is to evaluate numerically the stationary solitary waves U to
(1), which are solutions to (3). In the future, it is planned to investigate such
waves as potential 2D soliton-like candidates for the nonstationary equation
(1). This includes but is not limited to evolution in time of the resultant shape
and collision of two surges.

Different techniques have been applied through the investigation of the el-
liptic problem (3). The false transient method and the galerkin spectral method
are used in [6, 8|; the Fourier Galerkin method is implemented in [7, 8] and the
“perturbation solution - in [9]. We emphasize that both problems, Eq. (1) and
Eq. (3), are posed on unbounded domain the plane R?. Thus we have to nu-
merically limit the computational domain so that the results could approximate
the exact solution for the unbounded domain and, moreover, to keep the over-
all computational cost reasonable. Thus an artificial boundary €2 and artificial
boundary conditions (BC) are stated, known in the literature as absorbing BC
or nonreflecting BC (see [10] for a wave equation, [11] for a Helmholtz type
equation, [12] for elliptic second order equation, etc.).

The problem for posing artificial BC for BE is studied in [6], where the
following asymptotics of U is found

Uz,y) =U(r) ~ Cy/r?, for r>>1, (4)

for sufficiently large r = /22 + y2. In this paper a new and more sophisticated
artificial BC for stationary BE (3)

(1 —c?)a? — 2

U(r) = M=) 1

r>>1 (5)

is proposed. The condition (5) has an analytical form, which directly depends
on x,y and the velocity c. Furthermore, high order finite difference schemes are
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used for numerical evaluation of the solution to problem (3). The new BC (5)
and the numerical method are validated by performing a series of experiments,
as mesh refinement and computations on different space domains. A comparison
of the obtained here results with the similar results from [9] is also discussed.

3. Derivation of the new asymptotic
boundary conditions

Problem (3) can be rewritten as a system of two elliptic equations of second
order in different ways. We expect that the derivative U, in x direction will
be smaller than the derivative U,, in y direction because the solution moves
along the y-axis. Therefore the equality Uy, = AU — Uy, is substituted in (3)
and after introducing an auxiliary function W, we obtain an equivalent to (3)
system of two elliptic equations:

(1 =AU + (*B1 — o) AU — f(U) =W,

— AW = &(E — B1A) Uy, (©)

We have to complete the system (6) with appropriate boundary condi-
tions for functions U and W. In [6] the behavior of the solution U(r) for
r = /2% 4+ y?2 — oo is studied in details. From the mathematical analysis and
numerical results provided there it follows that U(r) and W(r) have O(r—2)
asymptotic decay at infinity.

Let us go further and estimate which terms in the equations (3), define
the asymptotic behavior of the solution. At first, suppose that for sufficiently
large r the second order derivatives AU, c*Uy,, ¢®U,, of U are of order O(r—?),
whereas the fourth order derivatives and the nonlinear term, i.e. A2U, ?AU,,,
*AUy,, Af(U) in equation (3) are of order O(r~%). Now consider equation (3)
for sufficiently large values of r. We insert the asymptotic values of all terms in
(3) and neglect the higher order terms of order O(r~%) inside the r-expansion.
Thus for large values of r the following formulas are valid:

AU (x,y) = Uy (z,y), U(z,y) ~ —— for 2 + 9% — oo (7)

2 +y

We apply the following change of variables
z=V1-cz, y=y, 7)) :=U(y)

and transform (7) into the Laplace equation for the new function v,

Av=0, 9(z,9)~—=, |Fl=vV2>+7y*— . (8)
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In polar coordinates the Laplace equation (8) is rewritten as:

”? 19 _ 19
wv(rﬂ/}) + ——o(7,¢) + T——v(r,@b) = 0. 9)

After the separation of variables o(7, ) = H(7)G(¢) we get the following
general form of functions G and H:

H(P) = S (1 + ™), (10)
n=0

GW) = (s sin(ned) + pia cos(ni)).
n=0

By following the asymptotic limitation that H(7) ~ 2 for |[F| — oo all
parameters (i1 ,,n 7# 2 and pg,,n > 0 are set to zero and thus H(7) = ,ul,gf%.
Similar simplification is made for the second function G. It is known that the
x and y axis on the plane are lines of symmetry for the soliton solution. In
order to fit this symmetrical behaviour, all parameters s, pta ,n # 2 are set
to zero. For directness and clarity the term g3 2sin(2¢) is also neglected and
thus H (1) = pa2cos(2¢). In this way the following representation of the main
asymptotic term v of the solution is obtained:

cos(24)) cos(1)? — sin(¢))* 7 — i

@(f¢) = Mu ?72 = :U‘u ?72 = Mu (.i‘Z _|_ §2)2 9 (11)

where p, = p124t42. In the old (z,y) coordinate system, (11) reads as:
(1 —c?)z? — 2
(1—c2)a?+y?)?

We treat the second function W from (6) in a similar way and obtain anal-
ogous asymptotic representation:

Ulz,y) = Hu (12)

(1 —c?)a? —y?
(1~ @+ P

The proposed formulas (12) and (13) are used as candidates for a BC and
series of numerical tests are done to prove their validity in Section 5. It is
expected that by increasing the size of the domain €2, the numerical solution
near boundary converges faster, and the p, and p,, parameters settle down (see
Test 1). It is also expected that the numerical solution behaves asymptotically
as T% for larger r >> 1 (see Test 2). The parameters p, and p,, are found in a
procedure described in Section 4.3.

W(z,y) = pow

(13)



146 K. Angelow

4. Numerical method for the elliptic system
4.1. Formulation

In order to relate to our previous results from [13, 14|, we make the following
change of variables

z = /B,y = /B,

S B AP (14)
Thus, the system (6) is transformed into new elliptic system:
(B=)U = (1-E)AU = Bf(U) =W, 15)

— AW = &(E — A)Ussz,

with 8 = 81/82 and ¢é = /.

We seek non-trivial solutions to (15) To avoid the trivial solution we pro-
ceed as in [6]: the value of the solution U at the point (0,0) is fixed, U (O 0) =29,
and new functions are introduced: U = U /6 and W= W /6. Thus U (0,0) =1
and from (15) we get

(B—3)U - (1—)AU — aBU? =W,

_ . (16)
— AW = &(E — A)Us;.
The value of 6 is found from the equation
1-2)AU - (B-A)U +W
0 = ( ) (3 ) |z=0,5=0- (17)

aBU2

In order to evaluate numerically the solution to (16) artificial time is intro-
duced, false time derivatives are added and one gets

W, (B—)U — (1 —&)AU — apolU? =W,

jt (18)
w ~

S AW = &(E — A)Uss.

Thus the solution to the steady coupled elliptic system (16) is replaced by
solving the pertinent transient equations (18) until their solutions U and W
cease to change significantly in time.
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4.2. Discretization

The unbounded domain R? is replaced by a sufficiently large computational
domain 2. Due to the obvious symmetry of the problem, we can look for the
solution only in the first quadrant 2 = [0, L,] x [0, L,].

The uniform and non-uniform grid define two different investigation ap-
proaches to discretization of (18) in Q. The meshing, that has been predomi-
nantly used in most cited papers for the numerical analysis of BE, is the non-
uniform one, see e.g. [6]. It has big time advantage of generating a fast solution
for the system (18), but also creates a major problem when using the solution
of (18) as initial data for hyperbolic equation (1). The ultimate goal is to
develop an algorithm which investigates collision of two waves with arbitrary
phase speeds ¢. Shifting the traveling waves in the hyperbolic equation on a
larger distance, and further colliding two ’soliton-like’ solutions requires a uni-
form grid. Therefore we decide to apply a uniform grid to solve equation (3)
((18) respectively). A uniform grid €y, is defined in the following way:

Qh:{(‘/ihg]) ‘/il :Zhug] :jhull :07 7NI7] :07 7Ny}7

where the discretization step h satisfies h = L, /N, = L, /N,,.
The value of the function U at mesh point Z;,y;,t is denoted by ﬁfj.
The spatial derivatives in (18) are defined by using centered finite differences
and extending the stencil:

N 2
Uszp(7) = 75 D, diU(i+ih), (19)
i=—p/2

Here p is equal to 2, 4 or 6. The weights d; taken from [16] are 1,—2,1
for p = 2, —%, %,—g, %,—% - for p = 4 and 9—10,—%,%, —%, %,—%,% - for
p = 6. The approximation error of formulae (19) is O(h”). Replacing the
Laplace operator in (18) by the discrete Laplacian

AnpUij = Uig)zzp + Vi)
we obtain finite difference schemes with high order of approximation O(h?*)
for p = 4 and O(h®) for p = 6. The application of FDS with high order of
approximation leads to a high rate of convergence of the method when solutions
are sufficiently smooth. In this way more accurate numerical solutions can be
produced on a coarse grid.

Symmetry conditions are used to impose the values of the discrete Laplacian
at mesh points close to lines {(0,y) : y < Ly}, and {(z,0) : « < L,}. Near the
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computational boundaries {(L,,y) : y < Ly} and (x,Ly) : © < L} we do not
change the stencil. The discrete Laplacian is defined there by using the values of
the discrete solution given in (12) and (13) at points outside the computational
domain.

4.3. Numerical Method

The Euler explicit rule is applied for approximation of time derivatives. The
nonlinear terms in (18) are computed on time level t*. Thus, the numerical
solutions at time level t*+1 are evaluated directly by the values of the numerical
solution at time level t*:

ﬁlkj—f—l Uk 0 ~2 =L

% (1 - &) A, U + (8 - &)UF, — apo(UF;)? = WE,

A 20
- — Ah,pWi]fj (E Ah,p)U 1,7,ZT,p*

This method for solving equations (18) can be considered also as “the simple
iteration method” for solving linear and nonlinear equations [15]. Last but not
least, in order to start the procedure we need initial values for functions U w.
These initial values are taken from the formulae in [9].

The transformation (14) modifies the BC (12) and (13) in the following
way:
O(2.9) = mB(@ ). Wald1) = Bl 1)
§(~ ) (1—02/ﬁ)x —y (21)

T,Y) = :
(1=2¢/B)z* +3?)?

In order to resolve the boundary functions in (21) completely, one needs the
values of 1, and p,. These are obtained iteratively, at each time level of the
algorithm for solving problem (20), by the minimization procedure described
below.

For a given numerical solution U* at the time level ti, we choose p, as
minimizer of the problem

P = IR 1Us(&:, §;) = Ul 12,05, (22)

where (Z;,7;) € Qp. The set Qp includes not only the boundary nodes on
09, but also inner nodes lying close (e.g. at distance 2h,4h, 6h, ... << N yh) to
the boundary. The minimization problem above (22) produces a simple linear
equation with respect to .
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5. Validation tests
Two tests are made to verify the new condition on the computational boundary
where the finite difference schemes are fourth order of approximation and the
following constants are fixed: « = 1,5 = 3 and ¢ = 0.45.
5.1. Test 1.
It reviews the behavior of 1, defined in (11) and numerically evaluated in (22).
In Table 1, for computational domains Q;, = [0, L;] x [0, L,] with L, = L,

= 20,40, 80,160, and fixed domain discretiization step h = 0.5, the following
quantities are presented at the end of the iteration procedure:

e values of the numerical solution (7” at point: 7; =0, y; = Ly,
e values of ji,,

e the Ly norm of the error obtained in the minimization procedure (22).

UF; at &; =0, R min

Le=dy | M5 — 1, o 105, 55) — UF |10
20 -2.23e-04 1.9355¢e-01 4.17e-05
40 -5.65e-05 1.9369¢-01 4.42e-06
&0 -1.41e-05 1.9378e-01 7.56e-07
160 -3.53e-06 1.9381e-01 7.44e-10

Table 1: Characteristic parameters of the minimization procedure
for different computational domains

The results in Table 1 demonstrate that the values of u,, shown in the
third column, converge as the domain becomes larger. Further, the values of
[7}7 ;j given in the second column decay with a rate of %2 The results obtained for
1y exhibit the same convergence, and are excluded for the sake of simplicity
and compactness.
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Figure 1: The efiect of the mesh size. Upper pannels: funtion U
Lower panels: 72U. Sy = — iy, Sy = /(1 — /1), see (23).

5.2. Test 2.

The second test reveals the asymptotics of the numerical solution presented in
log-log plots. Pictures in Figure 1 demonstrate important aspects of solution’s
cross sections on four different grids. The size of the computational domain is
kept constant Q, = [0,50] x [0, 50], ¢ = &/+/B = 0.45 and only the discretization
step changes, h = 0.1,0.2,0.4,0.8.

The first two horizontal pictures in Figure 1 present logarithmic scaled plots
of the absolute value of the numerical solution U . One can see the decay F%
at infinity guided by the black line. The next two horizontal pictures show
the numerical solution scaled by a factor #2. Thus, these graphs display 72U
along the vertical z axis. One can observe that the scaled profile of the solution
approximates a constant for large values of 7. These plots are in agreement with
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the new boundary function B(Z,§) found in (21) and with the asymptotics of
the solution. Further using formulae (21) for £ = 0 or for y = 0 one has for
sufficiently large 7

00.5) =~ 03,0 = ﬁ (23)

The last equation explains the connection between the two constants (black
line) displayed on botton pictures in Figure 1.

6. Results and Conclusion

On Figure 2, one could see the shape of the solution U to problem (20) (equiva-
lent to problem (3) in the reverse coordinate system (14) ) for two combination
of parameters ¢ = /Bcand 8: ¢=0.9,8=1and c=0.5,3 = 3.

In this paper we evaluate the stationary propagating in direction y with
speed ¢ solutions to 2D BE. An iteration method is used to compute the solution
of the corresponding fourth order nonlinear elliptic equation. A high order of
approximation finite difference scheme is applied for the discretization of spatial
derivatives.

A new BC is proposed on the boundary of the computational domain. Later
the BC is verified by computation on different grids, using different speeds ¢
and dispersion parameters 3. Near the origin the form of the computed here
stationary waves is similar to the presented in [9] form of ’best-fit’ station-
ary solutions, but near the computational boundary both solutions are quite
different.

The obtained analytical formulae (21) of the solution near the boundary
give great advantage for the numerical computation of the solutions to the
stationary BE (3) and (15) respectively. Instead of choosing bigger domain to
represent the zero boundary conditions at infinity, one could use (21).

Results concerning convergence of the iterative method, shape of the solu-
tion, comparison of the numerical solution with the 'best-fit’ formulae from [9]
will be discussed in another article.
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