

B-BIMORPHISMS

Omer Gok

Yildiz Technical University
Faculty of Arts and Sciences
Mathematics Department, Davutpasa
Istanbul – 34210, TURKEY

Abstract: Let X be an Archimedean vector lattice and it has a separating order dual X^\sim . By $(X^\sim)_n^\sim$ we denote the order continuous bidual of X . In this paper, we define a b-bimorphism of X and we extend it to the order continuous bidual of X .

AMS Subject Classification: 46B42, 46A40

Key Words: vector lattices, Arens multiplication, order continuous bidual, f-algebra, b-algebra

1. Introduction

The lattice ordered algebras (or Riesz algebras) were introduced in [1, 7] by the authors Aliprantis, Burkinshaw and Meyer-Nieberg. Their order biduals of lattice ordered algebras were studied by using Arens multiplications in [3, 6]. f -algebras, almost f -algebras, d -algebras and b -algebras in lattice ordered algebras were studied and their order biduals and order continuous biduals were investigated by the mathematicians in [3, 6, 9] using Arens products. The Arens triadjoint of bilinear mappings on products of vector lattices has been investigated by some mathematicians, for example, A. Toumi [8], R. Yilmaz

[10, 11]. In this paper, we study the Arens triadjoints of bilinear mappings which are b-bimorphisms on vector lattices. Let us recall the following definitions of some classes of bilinear mappings. Let X be a vector lattice. X^+ denotes the positive cone of X .

Definition 1. ([4, 5]) Let X be a vector lattice. A bilinear mapping $T : X \times X \rightarrow X$ is called a biorthomorphism if $x \wedge y = 0$ implies $T(z, x) \wedge y = 0$ for all $z \in X^+$ and it is separately order bounded.

The triadjoint of biorthomorphism is also biorthomorphism by Yilmaz [10]. He proved that the extensions of biorthomorphism to order bidual and order continuous bidual are biorthomorphism.

Definition 2. Let X and Y be vector lattices. A bilinear mapping $T : X \times X \rightarrow Y$ is called an orthosymmetric if $x \wedge y = 0$ implies $T(x, y) = 0$ for all $x, y \in X$.

The triadjoint of orthosymmetric bimorphism is also an orthosymmetric bimorphism by Toumi [8]. Toumi's proof is focused that the triadjoint of orthosymmetric bilinear mapping is defined on the order continuous bidual of vector lattice. In [10], Yilmaz extends this result to whole order bidual of a vector lattice.

Definition 3. Let X and Y be vector lattices. A bilinear mapping $T : X \times X \rightarrow Y$ is called a d -bimorphism if $x \wedge y = 0$ implies $T(z, x) \wedge (T(z, y)) = 0$ for all $z \in X^+$.

The definition of d -bimorphism is due to Yilmaz [11]. He proved that triadjoint of d -bimorphism is also a d -bimorphism on the order continuous bidual of a vector lattice by using Arens multiplication.

We can see from the definitions that every biorthomorphism is both orthosymmetric and d -bimorphism.

2. The Arens triadjoints of b-bimorphsim

In this section we define the b -bimorphism on a vector lattice and we prove that the triadjoint T''' of a b -bimorphism $T : X \times X \rightarrow X$ is also a b -bimorphism. Let X be a vector lattice with separating order dual X^\sim . By $(X^\sim)_n^\sim$ we denote

the order continuous bidual of X . We can embed X into second order dual $X^{\sim\sim}$ by means of canonical mapping. That is, $\sigma : X \rightarrow X^{\sim\sim}$ is defined by $\sigma(x) = x'' : x''(f) = f(x)$ for all $f \in X^{\sim}$ and $\sigma(x)$ defines an order continuous lattice homomorphism on X^{\sim} for every $x \in X$. Consider $\sigma(X)$ is a subalgebra in the second order continuous bidual $(X^{\sim})_n^{\sim}$ of X . Next, the band generated by $\sigma(X)$ is an order dense in the order continuous bidual $(X^{\sim})_n^{\sim}$ of X . The order ideal generated by $\sigma(X)$ in $(X^{\sim})_n^{\sim}$ is given by the formula

$$I_{\sigma(X)} = \{F \in (X^{\sim})_n^{\sim} : |F| \leq x'' \exists x \in X^+\}.$$

By Meyer, for every $0 < F \in (X^{\sim})_n^{\sim}$ there exist an upward directed net $0 < (F_{\alpha})$ in $I_{\sigma(X)}$ such that $F_{\alpha} \uparrow F$.

Definition 4. Let X be a vector lattice. A bilinear mapping $T : X \times X \rightarrow X$ is called a *b-bimorphism* if $x \wedge y = 0$ and $x \wedge z = 0$ in X imply $x \wedge T(y, z) = 0$ for all $x, y, z \in X$.

By using the definitions we obtain the following theorem.

Theorem 5. Every biorthomorphism is a *b-bimorphism*.

Theorem 6. Let X be a vector lattice and $T : X \times X \rightarrow X$ be a *b-bimorphism*. Then, the triadjoint of T is a *b-bimorphism*.

Proof. We can establish the following adjoints of the mapping T by means of the Arens multiplication, [2].

$$T : X \times X \longrightarrow X, (x, y) \rightarrow T(x, y), \quad (1)$$

$$T' : X^{\sim} \times X \longrightarrow X^{\sim}, (f, x) \rightarrow T'(f, x)y = f(T(x, y)), \quad (2)$$

$$T'' : (X^{\sim})_n^{\sim} \times X^{\sim} \longrightarrow X', (F, f) \rightarrow T''(F, f)x = F(T'(f, x)), \quad (3)$$

$$T''' : (X^{\sim})_n^{\sim} \times (X^{\sim})_n^{\sim} \longrightarrow (X^{\sim})_n^{\sim}, (F, G) \rightarrow T'''(F, G)f = F(T''(G, f)), \quad (4)$$

for all $x, y \in X$, $f \in X^{\sim}$ and $F, G \in (X^{\sim})_n^{\sim}$.

First, we will prove that if $x \in X^+$ and $0 \leq F, G, H \in (X^{\sim})_n^{\sim}$ hold $F, G, H \leq \sigma(x)$ and $F \wedge G = F \wedge H = 0$, then $F \wedge T'''(G, H) = 0$. Let $0 \leq f \in X^{\sim}$ and $N_F = \{f \in X^{\sim} : |F||f| = 0\}$ is a band. This implies $X^{\sim} = N_F \oplus C_F$, where $C_F = N_F^d$. So, $C_F \subseteq N_G$ and $C_F \subseteq N_H$ satisfy. For this, let $f \in (X^{\sim})^+$ and $x \in X^+$. Then, there exist $g, h \in X^{\sim}$ with $g \wedge h = 0$ and $F(g) = G(h) = H(h) = 0$ such that $T'(f, x) = g + h$ by [3].

By the Riesz-Kantarovich formula,

$$(g \wedge h)(x) = 0 = \inf\{g(y) + h(z) : y + z = x, y, z \in X^+\}.$$

This implies that for a given any $\epsilon > 0$, there exist $y, z \in X^+$ such that $x = y + z, g(y) < \epsilon/2$ and $h(z) < \epsilon/2$. Define the order continuous linear functionals K, L and M on X^\sim by $K = F \wedge \sigma(y - y \wedge z)$ and $L = G \wedge \sigma(z - y \wedge z)$ and $M = H \wedge \sigma(z - y \wedge z)$. Then, $0 \leq F - K = F - (F \wedge \sigma(y - y \wedge z)) \leq 2\sigma(z)$, and by the same way $G - L \leq 2\sigma(y), H - M \leq 2\sigma(y)$. Since $(y'' - z'')^+ \wedge (z'' - y'')^+ = 0$ and T is a b-bimorphism and T, T''' coincide on $X^{\sim\sim}$, we obtain

$$(y'' - z'')^+ \wedge T'''((z'' - y'')^+, (z'' - y'')^+) = 0.$$

Therefore, $0 \leq K \wedge T'''(L, M) \leq (y'' - z'')^+ \wedge T'''((z'' - y'')^+, (z'' - y'')^+) = 0$. That is, $K \wedge T'''(L, M) = 0$. We obtain $K \wedge T'''(F, H) = 0$ and also $K \wedge T'''(G, H) = 0$. From here by using the similar technique in [11], we find $F \wedge T'''(G, H) = 0$.

Secondly, we prove that if $0 \leq F, G, H \in (X^\sim)_n^\sim, F \wedge G = 0, F \wedge H = 0$, then $F \wedge T'''(G, H) = 0$. If $0 \leq F, G, H \in I_{\sigma(X)}$, then by the definition of order ideal generated by $\sigma(X)$, we have $0 \leq F \leq x'', 0 \leq G \leq y'', 0 \leq H \leq z''$ for some $x, y, z \in X$. Hence $0 \leq F, G, H \leq x'' + y'' + z''$. By the first part of the proof, $F \wedge T'''(G, H) = 0$. If we take $0 \leq F, G, H \in (X^\sim)_n^\sim$ as arbitrary, by the order denseness there are upwards directed nets $F_\alpha, G_\alpha, H_\alpha$ in the order ideal $I_{\sigma(X)}$ generated by $\sigma(X)$ such that $0 \leq F_\alpha \uparrow F, 0 \leq G_\alpha \uparrow G, 0 \leq H_\alpha \uparrow H$. By the same technique in the paper Bernau and Huijsmans [3], we can obtain $F \wedge T'''(G, H) = 0$. \square

Definition 7. An Archimedean lattice ordered algebra A is called a b-algebra if $a \wedge (bc) = 0$ for all $a, b, c \in A$ with $a \wedge b = a \wedge c = 0$

Definition 8. A lattice ordered algebra A is said to be a d-algebra if $a \wedge b = 0$ in A implies $ac \wedge bc = 0 = ca \wedge cb$ for every $c \in A^+$.

Definition 9. A lattice ordered algebra A is said to be an almost f-algebra if $a \wedge b = 0$ in A implies $ab = 0$.

Any f-algebra is a d-algebra, an almost f-algebra and a b-algebra. If A has a unit element then d-algebra and almost f-algebra are f-algebra.

Any Archimedean b-algebra is not necessary a d-algebra and almost f-algebra, and f-algebra, [9].

As a result of this work, we obtain that if A is a b-algebra, then the order continuous bidual of A is a b-algebra. Also, if we add to b-algebra a property called positive square closedness, then the order bidual becomes a b-algebra with respect to Arens product. The following result is presented, [9].

Theorem 10. *If a b-algebra A has positive square, then the order bidual of A is also a b-algebra.*

Proof. Let A be a b-algebra with positive squares. Define a map $T : A \times A \rightarrow A$ by $T(a, b) = a.b$ for every $a, b \in A$. Here, T is a b-bimorphism. triadjoint of T is also a b-bimorphism. \square

References

- [1] C.D. Aliprantis, O. Burkinshaw, *Positive Operators*, Academic Press, New York (1985).
- [2] R. Arens, The adjoint of bilinear operations, *Proc. Amer. Math. Soc.*, **2** (1951), 839-848.
- [3] S.J. Bernau, C.B. Huijsmans, The order bidual of almost f-algebras and d-algebras, *Trans. Amer. Math. Soc.*, **347** (1986), 4259-4275.
- [4] K. Boulabair, W. Brahmi, Multiplicative structure of biorthomorphisms and embedding of orthomorphisms, *Indagationes Math.*, **27** (2016), 786-798.
- [5] G. Buskes, Jr.R. Page, R. Yilmaz, A note on biorthomorphisms. Vector Measures, Integration and related topics, In: *Operator Theory, Advances and Applications*, **201** (2009), 99-107.
- [6] C.B. Huijsmans, B. de Pagter, The order bidual of lattice ordered algebras, *J. Funct Anal.*, **59** (1984), 41-64.
- [7] P. Meyer-Nieberg, *Banach Lattices*, Springer, Berlin (1991).
- [8] M.A. Toumi, The triadjoint of an orthosymmetric bimorphism, *Czechoslovak Math. J.*, **60**, No 135 (2010), 85-94.
- [9] B. Turan, M. Aslantas, Archimedean l-algebras with multiplication closed bands, *Indagationes Math.*, **25**, No 2 (2014), 588-595.

- [10] R. Yilmaz, The Arens triadjoints of some bilinear maps, *Filomat*, **28**, No 5 (2014), 963-979.
- [11] R. Yilmaz, A note on bilinear maps on vector lattices, *New Trends Math. Sci.*, **5**, No 3 (2017), 168-174.