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Abstract: We study the problem of determining three thermal coefficients
from one set data of a model problem rising in thermodynamics. This is an
inverse problem, that is to coincide the solution of the differential equation
with actual experimental results. The used method is based on minimizing the
solution of the problem with the experimental data. Both the direct and inverse
problems are described and numerical results are given.
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1. Introduction

The problem of finding the coefficients and parameters for thermodynamical
problems when the solution is known is an inverse problem. To solve the inverse
problem, one must first solve the direct problem, then solve the inverse problem
for some coefficients and parameters. Solving such a problem therefore requires
solving an optimization (minimization) problem, which is algorithmically more

Received: November 7, 2018 © 2019 Academic Publications

§Correspondence author



92 A. Kharab, F.M. Howari, R.B. Guenther

challenging than the linear problem. These problems have many applications
in engineering and science.

Inverse problems arise in many branches of science and engineering where
the values of some sample material parameters must be obtained from the
experimental data (see [10], [11], [12], [13], [14], [20], [21], [22]). Theory and
applications of the determination of parameters of sample material has seen
tremendous growth in recent years. Inverse problems can be formulated in
many mathematical areas and can be analyzed by many different computational
techniques (see [15], [16], [17], [18], [19], [23], [24], [25], [26]).

In [1] the authors illustrate the full description of fractal-based techniques
and their application to the solution of inverse problems for ordinary and partial
differential equations. In [2] the authors give a description of an inverse elec-
tromagnetic problem using a perturbation homotopy method combined with
Gauss-Newton methods. In [3] the authors investigate a method for imposing
two natural frequencies on a dynamic system consisting of an Euler-Bernoulli
beam and carrying a single mass attachment. In [4] the authors use an algo-
rithm to solve the problem of splicing the shredded paper. In [5] the authors
describe an internal tidal model with experiments to investigate the estimation
of spatially varying bottom friction coefficients.

The book by Evensen (2006) provides a good overview of many computa-
tional aspects of the subject, reflecting the author’s experience in geophysical
applications and related areas and provides a good entry point to some of
the current research in this area. In [7] Kaipio and Somersalo introduce the
Bayesian approach to inverse problems, especially in the context of differen-
tial equations. There is a wide research literature in the area of parameter
estimation (see [8]), as well as attempts to introduce the notions of parameter
estimation.

Wave propagation problems in environmental applications such as seismic
analysis, acoustic and electromagnetic scattering are described in [9] for both
forward and inverse problems.

In our thermodynamics model problem we will study the problem of deter-
mining three thermal coefficients from one set data. This is an inverse problem,
that is to coincide the solution of the differential equation with actual experi-
mental results.
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Figure 1: Geometry of the model problem.

2. The model problem

Our thermodynamic model problem consists on of a material that is insulated
at = L and with heat source located at x = 0.

We assume the sample is initially at the uniform temperature, A, heated
by a lamp at x = 0 (see Fig. 1).

The sample is assumed to be homogeneous solid material.

At the right end point is insulated, that is,

ou
—(L,t) =0.
(L) =0
At the left hand endpoint
ou
W =—-k—(0,t
ax( i )
which means that the heat source is held constant during the course of the

experiment.
Inside the sample, its temperature, u(x,t) is governed by the Newton type
heat equation. So, the problem of finding u involves solving

ou 0%u
pca(x,t) = kw(a:,t)—m(u—/l), O<z<L, t>0, (1)
u(z,0) = A, 0<z<L,
ou
8_x(L’t) = 0, t>0,
ou
a—x(o,t) = —W/k, t>0,

where p is the density, ¢ is the specific heat of the substance, m is the heat
transfer coefficient, W is the power of the source, and k is the thermal conduc-
tivity. Here p is assumed known from an independent measurement. L is the
length of the material.
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The parameters k, ¢, and m are to be determined from measurements. It is
simplest in dealing with the equation (1), to divide by pc and set a = k/(pc),
the thermal diffusivity and o = m/(pc) so the partial differential equation is

0 0?
8—;‘(95, t) = aa—;;(a:, £) — alu— A). (2)
We shall then determine parameters k, a, and a. If k, a, and « are known,
then ¢ = k/(pa) and m = pca are determined successively.
To simplify our problem, we make the change of variables to get the new

problem for v(x,t)
W

o) = go (e L)
u(z,t) = w(z,t) + (z), 3)
ve(z,t) = avg(x,t) —av(z,t) (4)
+Hap' () —ap(x)+ad], 0 < z<L, t>0
v,(0,t) = 0, wv(L,t)=0 (5)
v(z,0) = A—ox). (6)

Once v(z,t) is known, then u(x,t) is obtained from (3).

To solve the problem for v(x,t) we need to solve first the problem

zi(x,t) = azg(x,t) —az(z,t), 0<z<L, t>0 (7)
2:(0,t) = z,(L,t) =0 (8)
2(2,0) = A—¢(z) 9)

which is done by setting z(x,t) = X (x)T'(t). The explicit solution is then formed
by several steps to obtain the eigenfunctions.

WL s 2W e
_ —at | TV~ v —alit
z(xz,t) =e [ oF 2 k:/\%Le cos(/\na:)] (10)
and AW 1
_ - _L2 1 —at
Ca,t) = — <a+3 )( ™)

- Z TIN0 2 ) [1 - e*(aJra)‘%)t] cos(Apx), (11)
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where \, =nw/L,n=1,2,....
With z(x,t) and ((z,t) known, u(x,t) is obtained from the equation

uw(z,t) = z(x,t) + ((x,t) + ¢(x) + A. (12)

3. The inverse problem

There are three parameters that must be identified: a, k, and «. They all
appear in the equations. the physically relevant parameters are k, ¢, m and the
relationship are

k is the same, ¢ = k/(pa), m = pca,

where p is obtained independently.

Now the way the experiment is run as follows: Over a time period, 0 <
t < T, the lamp is turned on with a power ) watts. Then is turned off. The
temperature then decreases until it reaches the ambient temperature along the
full length of the sample. This actually means that the power of the lamp is a
function of the time ¢ so we should write

an={ 25 =" (13)

For ¢t > T one has to reset the problem where u(x,T) is the “initial” condi-
tion and the boundary conditions are u,(0,t) = 0 and uy(L,t) = 0.

We need data at several points. The way the identification go is that we
have a solution to the initial problem for all time. The time dependent part,
that is the so called transient part tends to zero rapidly so choose 7' so large
that the transient part of the solution is negligible. The time independent part
of the solution satisfies:

kg, (z,t) — mlu(x,t) — A] = 0
uy(0,t) = —W/k
u. (L, T) = 0.

The solution is

W cosh(y/FL) cosh(y ]/ 22) — sinh(y /2o
4) = sinh( /T L) h(\/; ) h(ﬁ e

The temperature gauges, that is, the thermal couples must be set in two
separate places, say at + = L/3 and = = 2L/3.
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One that solves for vkm and \/k/m in terms of the measured values, say
u(L/3) = p and u(2L/3) = . To find a we go to the time dependent case.

Now k and m are known. a is chosen so that the measured value of the
temperature, say U(t), are as close as possible to the calculated values, that is,

1/2

min < /0 (L) - U(t)]?dt) (15)

5

is as small as possible. This will give the value for a.

4. Numerical results

In this section we will show some numerical results that determine the values of
a, k and o and therefore u(z,t) in the inverse problem. For the infinite series in
equations (10) and (12) we took 100 terms to guarantee the convergence of the
series. The integral in equation (15) is approximated using the trapezoidal rule.
The least squares method along with Newton’s method for nonlinear equation
are used for the minimization of equation (15).

In this example we consider an unknown metal material with length L =5
cm and density p = 2.71 g/ecm3. The experiment was performed as described
in Fig. 1 in the Laboratory of Zayed University, with the initial temperature
of the sample A = 20%., W = 100 watts. The experiment was run for 60 sec.
and then the lamp was turned off to let the sample cool down. The results of
the experiment is shown in Fig. 2 giving the measured values of u(L/3,t) and
w(2L/3,t), 0 < t < 120.

As t — oo, u(L/3) — 332.9%. and u(2L/3) — 322.6% (see Fig. 3) These
values were used in Eqn. (14) to get the measured values for k = 203 W /cm-K
and m = 1.45. These values are then used for the minimization of Eqn. (14) to
obtain a = 81.36 cm/ sec. and therefore ¢ = k/(p * a) = 0.92 W-s/Kg-K.

Nomenclature:

k = conductivity (W/cm-K)

¢ = specific heat (W-s/Kg-K)

p = density (g/cm?)

W = power (W/cm?)

a = k/pc thermal diffusivity (cm?/s)

A = initial temperature of sample (° c.)
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Temperature of the sample at x=L/3 and L=2L/3

Temperature Indeg, cel,
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Figure 2: Experimental results of u(z,t) at x = L/3 (series 2) and
x = 2L/3 (series 1.

5. Conclusion

This paper deals with the determination of three thermal coefficients from one
set data of a model problem rising in thermodynamics. The present study
shows that we can easily get the thermal coefficients of a material by solving
an inverse problem that leads to an optimization problem. The model problem
was presented and numerical results were given.
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