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1. Introduction

Numerous problems in mathematics can be formulated in the form of differential
equations, an initial value problem (IVP) is an ordinary differential equation
(ODE) whose boundary conditions are specified at a single point, which can
be found in mathematical modeling of real-life problems [1]-[3]. There is also
another class of the ODE which is the boundary value problem (BVP), a BVP
differs from an IVP in that the boundary conditions are specified at more than
one point and in that solutions of the differential equation over an interval,
satisfying the boundary conditions at the endpoints, are required ([4], p.1).
BVP arises in several branches of engineering and applied sciences including
fluid dynamics and chemical reactions, elastic beams, etc. (see [5], p.7 - p.27).

In this work, we concentrate on finding an approximate solution to two-
point BVPs with boundary conditions type I and II of the form

u" = f(t,u), a<t<b, (1)
with boundary conditions:
(a) Type 1
ua) =a, u(a)=8, ulb)=r. (2)
(b) Type II
wa)=a, W) =p, ub)=A (3)

where a,b, a, 8, v, and A are constants, the proof of existence and uniqueness
of solutions to two-point BVPs of third-order ODE is possible, see Henrici [6].
For analytical solutions of the IVPs and BVPs, analytical methods are seldom
used since most of the problems encountered were difficult, with either complex
differential equations or complex boundary conditions ([7], [8]) or sometimes
finding an analytical solution to some ODE applications is complicated or im-
possible, therefore recourse to numerical methods in such cases is almost the
only choice. For several years, various numerical methods have been derived to
handle the IVPs and BVPs, which is a subject can be treated separately. The
numerical procedures for the solution of the IVP can be classified into two ma-
jor groups: one-step methods and multi-step methods. One of the advantages
of one-step methods is that it can change the step size easily at different ¢ ([4],
p.10). Two such methods of the one-step are Taylor’s method and Runge-Kutta
(RK) method. The numerical algorithm of the RK method is considered the
most widely used scheme, due to its low truncation error ([4], p.8). For the
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multi-step, such methods are Predictor-Corrector methods, Adams-Moulton
method, Adams -Bashforth method, and Trapezium rule method. Similarly,
for the numerical procedures for the solution of the BVP, there exist several
techniques, such as Finite-Difference method ([9], [10]), Shooting method ([5],
[11]), the quasilinearization method ([12], [13]), the monotone iterative method
([14], [15]), and the variational iteration method ([16], [17]). Burden and Faires
[1] have used RK method (after transferring it into the system of first-order) via
shooting technique to solve second-order two-point linear BVP with Dirichlet
boundary condition. However, many researchers ([18], [19]) have shown that
using direct RK approach to solve higher-order ODE without reducing it first
to a system of first-order is superior and more efficient than the conventional
RK. Where there is no need to increase the number of equations and calculating
more function evaluations which lead to a time-consuming process and more
human effort as in classical RK.

Therefore, the purpose of this study is to construct a direct and effective
method of Runge-Kutta type with less computation time and function evalua-
tions to solve two-point BVPs of third-order with boundary conditions type I
and II, algorithm of shooting technique was offered to develop the approximate
analytical solutions.

The organizing of this paper is as follows: In Section 2, the construction of
the explicit RKT3s4 method is presented. The explanation of the new shooting
technique algorithm is given in Section 3. In Section 4, four problems numeri-
cally examined the efficiency of the RK'T3s4 method as compared to the existing
method and the last section, deals with the conclusions.

2. Construction of the Explicit RKT3s4 Method

In this section, an explicit three-stage RK'T method of order-four will be derived.
The general p-stage RKT method for the differential equation

u" = f(t,u(t)) (4)
given by
h? a
Uny1 = Up+ hu! + ?u;; + h‘”{} biki, (5)
“ A~
Uppr = U+ hup + b2 bk, (6)

i=1
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C2 a21
C3 a31 asz2

ko b
by b b1 by

up o= up+ hi gmi, (7)
i—1
where
k1= f(tn, un),
ki = f(tn + cih,uy + cihul, + ?c?ug + h3z aijki)s (8)

for © = 2,3,...,u, where ¢;, a;;, b;, gi, and I;Z for e = 1,2,...,u and j =
1,2,...,u are the parameters of the RKT method and they supposed to be
real. RKT method is said to be explicit when a;; = 0 for i < j, otherwise it
is an implicit method. RKT method (5)-(8) can be written by the well-known
Butcher tableau as follows (see Table 1):

To derive the RKT3s4 method, we will use the order conditions that have
given by Mechee et al. [20] up to fifth-order for u,u’, and «”. The order
conditions of p-stage RKT method up to fifth-order as given in [20] are given
as follows.

The order conditions for wu:

Order 3:

Order 4:
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Order 5: )
> bic; = il (11)
The order conditions for u':
Order 2:
> b=, (12)
Order 3:
Z I;ici = y (13)
Order 4: )
> bic; = 3 (14)
Order 5: ) )
. 3 R
P R iy = —— 1
D biek =35 D bieij = 35 (15)
The order conditions for «”:
Order 1: )
D bi=1, (16)
Order 2: X )
Order 3: X )
> bic; = 3 (18)
Order 4: A ) A )
Zbic? = Z, Zbiaij = ﬁ’ (19)
Order 5:

A 1 A 1 2 1
2 : 4 2 : } :
biCi = 5, bZaZ]C] = m, biCLijCi = % (20)
Now, assume that c3 = 1, as a result, we will have a system of nonlinear

equations, consisting of ten nonlinear equations with fourteen unknown vari-
ables that have not yet been resolved, as follows:

1
bl+b2+b3=€, (21)
1
byco + b3 c3 = oYk (22)
A A A 1
bl+b2+b3=§, (23)



160

A. Abdulsalam, N. Senu, Z.A. Majid

N N 1
®@+%%=a

A A 1

b 2 b 2:_

2C2” +03¢C3 12

by + by + b3 = 1,

2 2 1
®@+%%=?

2 9 2 9 1

by c2” + b3 c3 =3

2 3 2 3 1

bQCQ +b303 = -,

4

b + byasa + by aza =
221 3 a3,1 3032 = o1

(24)
(25)
(26)
(27)
(28)
(29)

(30)

Accordingly, the system has a solution based on three free parameters bo,

as,1, and az 1 as follows:

S>> S
[\ —

S>>
w

as.2

S
—

_1
=5
_2
=3
_1
=5
2—402,1—03,1+Z,
1 1
=_———-b
3 22>
1 1
b —=b —
3 22+247
1
62_57
63:1,
N 1
bl_gv
N 1
b2:§7
bz = 0.

(31)
(32)

(33)

(40)
(41)

Based on Dormand [21], the free parameters are chosen by minimizing the
error equations. The global error of the fifth-order conditions is defined as
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0

1

2 40
11

]' 25 100 0
3 1T T
40 10 120
1 1
5 3 0
121
6 3 6

Table 2: Butcher tableau for RKT3s4 method.

follows:
R . e
/! /
ITO o= [ S @2+ 3 (@2 + Y (1), (42)
=1 1=1 =1

where T"®) 7'G) and T®) are the local truncation error terms of the RKT
methods for v”, v/, and u respectively and Tg(‘:’) is the global truncation error.
Based on the free parameters b, as 1, and ag; we get the global truncation
error term of fifth-order condition for u, v/, v” as follows:

1T 2 = 1920042, + 3200 as1 az 1 + 40042, + 3600 b3

1
210
—1120 a1 — 12031 — 720 by + 61)%/2. (43)

Then, minimizing equation (43) with respect to the free parameters bo, as 1,
and a3, by using Maple software (Minimize command in Optimization package)

to obtain by = &, asy = 1205, ag; = a5, and || To”) |la= 0.01181453907.
Lastly, all the coefficients of the RK'T3s4 method are written in Butcher tableau

(see Table 2):

3. Shooting Method for Linear BVP

Shooting technique is used to convert the BVP to IVPs. The idea of shooting
technique is to obtain the missing initial value until the boundary condition at
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the other end converges to its correct value. When we use the shooting method,

we transform (1) into IVP of the form

u" = f(t,u), a<t<b,
uwla) =a, u'(a)=p8, u"(a)=M\,

where A is any number. Then the resulting IVP will be solved using RKT

method.

Reduction to Three IVPs:

The solution of a linear two-point BVP is associated with the formation of a

linear combination of the solutions to three IVPs.
The form of the IVPs as follows.
Suppose that 1(t) is the unique solution to the IVP

1/}/// = fl (t7 w)a

At ¥) =a@)v(t) +9(t), with i(a) = a, ¥/(a) =0, ¥"(a) = 0.

Suppose that p(t) is the unique solution to the IVP

p" = fa(t, p),
fa(t.p) = q(t)p(t), with p(a) =0, dp'(a) =1, p”(a) =0.

Suppose that ¥(t) is the unique solution to the IVP

29/// — fg(t, 29)’
F3(t,9) = q()9(t), with 9(a) =0, ¢'(a)=0, ¢"(a)=1.

Then the linear combination
u(t) = (t) + O1p(t) + 0209(t),

is a solution to the BVP (1).

(44)

(45)

(46)

(47)

For the boundary condition type I, the solution u(t) in equation (47) takes

on the boundary values. Then the linear combination

u(a) = ¥(a) + O1p(a) + 629(a),

u'(a) =Y (a) + 019 (a) + 029 (a),
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u(b) = (b) + 01 p(b) + 020(b). (52)

Imposing the boundary conditions u'(a) = 8 and u(b) = « in (51) and (52)
produces #; =  and 0y = %. Therefore, if ¥(b) # 0, the unique
solution of the two-point BVP (1) with boundary condition type I is given by:

Y~ () — Bp(b)
o

For the boundary condition type II, the solution u(¢) in equation (47) takes on
the boundary values. Then the linear combination

u(t) = ¢(t) + Bp(t) + (t)- (53)

u(a) = ¥(a) + 01p(a) + 029(a), (54)
u(a) = «, (55)
u'(a) =4’ (a) + 01p'(a) + 629’ (a), (56)
u'(a) = 6. (57)
u'(b) = ' (b) + 010 (b) + 6209 (b). (58)

Imposing the boundary conditions «/(a) = § and u/(b) = A in (57) and (58)
produces 01 = (3 and 0y = %@)ﬁp(b). Therefore, if ¥'(b) # 0, the unique
solution of the two-point BVP (1) with boundary condition type II is given by:

v =’ (b) — Bp'(b)
) 9(t).

u(t) = 9(t) + Bp(t) + (59)

Algorithm 1: RKT Method via Linear Shooting Technique:

To approximate the solution of BVP (1) with boundary condition type I:
INPUT: «, B, v boundary conditions; a, b endpoints; N number of subintervals.
OUTPUT: approxunatlons 14 to u(t;) ; pa,i to u'(t;) ; w3, to u”(t;) for each
1=0,1,.

Step 1: Set h =(b—a)/N

1/J1,0 = Qg
Pa,0 = 0;
P30 =0;

p1,0="0;
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p2,0 = 1;
P30 =0;
V1,0 =0;
Vo0 = 0;

Step 2: For ¢ =0,..., N — 1 do Step 3 and Step 4.
(RKD method is used in Step 3 and Step 4.)

Step 3: Set t = a + ih.

Step 4: Set

k1= fi(t, ¥1);
h2 ) i—1
ki = filt +cihy g+ ciltag + o i s + WY aijeg);
j=1
h? -
Viiv1 = Yii+hio; + > V3 + h3 Z b K
i=1

n
Yoyt = o+ habsg+h7 Y bk

i=1
H 2
Ysipr = Wsi+h > bk
1=1
k1= falt, pri);
h2 i—1
Ri = fat+cih, pritcihpit - psi+ ¥ aij Ry);
j=1
h? ¢
PrLivt = prithpait — psit W2y bk
i—1
M ~
priv1 = p2i+hpsi+h? Z bi Ki;
i=1
¢ N
p3iv1 = p3ith Z bi Ki;
i=1

k1 = f3(t, V1,);
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_ h? — -
R; = fg(t + C; h, 19171' + C; hﬁz,i + 7 6?19371‘ + hgz Ajj lij);
7=1

h? SN
Vit1 = Vg +hdy; + > V3, + h? Z b K
i—1

n
Boip1 = Vo +his; + h? Z b Ki;
=1

B
U341 = 193,i+hzbi@;
i=1

Step 5: (For boundary condition type I)

set w10 = ;

w20 = B

_ (=i n=e20m.N) |
()0370 191,]\7 )

OUTPUT (a, ¢1,0, 92,0, $3.0)-

Step 5: (For boundary condition type II)

set p10 =« ;

w20 = B3;

_ (=t n—p20p2.n) |
()0370 192,]\7 )

OUTPUT (a, ¢1,0, 92,0, $3.0)-

Step 6: Fort=1,..., N set

Q1L =1+ 20 p1,i + 30014
Q2 =Pa; + P20 p2,i + 3,0 V24;
Q3 =13 + Y20 p3,i + 3,0 V34;
t=a+1h;
OUTPUT (t,01,02,,03).

Step 7: Complete.
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4. Numerical Results

In this section, we selected four problems to test the performance of the RK'T3s4
method in terms of accuracy and effectiveness. The first two problems are BVP
problems, while the second problems are a class of BVP called self-adjoint
singularly perturbed boundary value problems (SPBVPs).

For the numerical comparisons, we chose the following fourth-order RK
types methods of comparisons for the first and second problems, whereas for
SPBVPs we wanted to examine whether the new method could solve this type
of problem or not, for this we compared with Quartic B-spline methods. Taking
into consideration that the Quartic B-spline and Runge-Kutta type methods
have different behavior.

All calculations were performed using the code written by us in C program.

e RKT3s4: The three-stage fourth-order explicit RK'T method derived in
this paper;

e RKD4M: The three-stage fourth-order RKT method of [23];
e RK4: The four-stage fourth-order RK method given in [22];
o RK4Z: The five-stage fourth-order RK method of [24];

e F.N: The number of function evaluations;

e MAXE: Max (|y(t,) — yn|) which is the maximum between absolute
errors of the exact solutions and the computed solutions;

Problem 1. (See Arshad et al. [25]) Consider the inhomogeneous linear two-
point BVP

u" =tu+ (2 262 =5t —3)e!, 0<t<1,
uw(0) =0, 4 (0)=1, wu(l)=0.

The analytic solution is given by
u(t) =t(1 —t)e’.

Problem 2. (See Abd El-Salam et al. [26]) Consider the inhomogeneous linear
two-point BVP

W +u=(t—4)sint+ (1 —1t)cost, 0<t<1,
w(0) =0, /(0)=-1, /(1) =sin(1).
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The analytic solution is given by
u(t) =(t — 1)sint.

Problem 3. (See Saini et al. [27]) Consider the inhomogeneous two-point
SPBVP

—eu/”—l—u:6€(1—t)5t3—662<6(1_t)5_90(1_t)4t

+ 180(1 — t)3#* — 60 (1 — t)2t3>,

The analytic solution is given by
u(t) =613 (1 —t)°.

Problem 4. (See Saini et al. [27]) Consider the inhomogeneous two-point
SPBVP

— et + u = 81¢? cos 3t + 3esin 3¢,

uw(0) =0, u'(0)=9¢, u(l) = 3esin(3).

The analytic solution is given by

u(t) =3 esin 3t.

It is easy to note through Figures 1, 2 that RKT3s4 method performs
well when integrating third-order BVP compared to RKD4M, RK4, and RK47Z
methods and we can observe from Tables 3, 4 that the numerical results for
the RKT3s4 agree to one decimal place when compared with the fourth-order
RK methods (RKD4M, RK4, and RK4Z). Add to that, the figures confirm
that RKT3s4 method requires fewer function evaluations than RK4 and RK4Z
methods. That is because when we solve problems (1), (2) using RK4 and RK4Z
methods, we need to reduce them to a system of first-order BVPs which is three
times the dimension. Therefore, using a direct method means skipping the step
which involves solving the system of linear differential equations which can
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N Methods F.N MAXE

RKT3s4 12 4.290020890 (-6)
4 RKDAM 12 2.572186843 (-5)
RK4 48 4.653033201 (-5)
RKAZ 60  4.653033201 (-5)
RKT3s4 24  2.314759256 (-7)
8 RKDAM 24  1.595541387 (-6)
RK4 96 3.384321949 (-6)
RK4Z 120 3.384321949 (-6)
RKT3s4 48  8.975345855 (-9)
16 RKDAM 48  9.853887617 (-8)
RK4 192 2.202264262 (-7)
RK4AZ 240 2.202264262 (-7)
RKT3s4 96  4.998855219 (-10)
32 RKDAM 96  5.856636787 (-9)
RK4 384 1.406407724 (-8)
RK4Z 480 1.406407724 (-8)

Table 3: Maximum errors and number of function evaluations of
Problem 1.

save a large amount of work, in terms of the number of function evaluations.
As for solving third order SPBVP with respect to different values of e, we
observed that the results obtained in Tables 5, 8 showed the efficiency of the
new method. Figures 3, 4 are also visualized comparing the given tables. Thus,
the RK'T3s4 method is very efficient and accurate to evaluate according to the
given problems and boundary conditions.

5. Conclusion

The two-point boundary value problems of third-order ordinary differential
equations with boundary conditions type I and type II, can be solved using
the direct method of Runge-Kutta via shooting technique. The experiments
have shown that the new method worked well, as expected, which is to say that
using a direct method to solve the higher-order ordinary differential equations
is not only most efficient in terms of the absolute maximum global error but is
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N Methods F.N MAXE

RKT3s4 12 1.967463006
4 RKD4AM 12 1.799932279
RK4 48 1.159839228
RK4Z 60 1.159839228

RKT3s4 24 1.869702460
8 RKD4M 24 1.549408651
RK4 96 7.166950172
RK4Z 120 7.166950172

RKT3s4 48 5.482110596
16 RKD4M 48 1.543556326
RK4 192 4.432972907
RK4Z 240 4.432972907

RKT3s4 96 8.907090702
32 RKD4M 96 1.693722997
RK4 384 2.752917824
RK4Z 480  2.752917824

o~~~ o~ |~~~ A~~~ o~~~ A~~~

_6)
_5)
_4)
_4)
_7)
_6)
_6)
_6)
_8)
_7)
_7)
_7)
_9)
_8)
_8)
_8)

Table 4: Maximum errors and number of function evaluations of
Problem 2.

N  e=1/16 e=1/32 e=1/64

10 6.5x10% 28x10% 1.0x10°6
20 4.2x1077 1.7x1077 6.6 x 108
40 26x1078% 1.1x10"% 4.1x107°

Table 5: Maximum error of RKT3s4 of Problem 3.

more efficient as it can save a large amount of work, in terms of the number of
function evaluations.



170

A. Abdulsalam, N. Senu, Z.A. Majid

N

e =1/16 e =1/32 e =1/64

10
20
40

47x107% 19x107* 80x 1075
1.1x107% 47x107° 19x107°
26x107° 12x107° 48x 106

Table 6: Maximum error of Problem 3 in Saini [27].

N

e =1/16 e =1/32 e =1/64

10
20
40

290%x107% 92x107% 14x10*
1.2x107% 38x10° 6.8x10°°
64x107% 21x10% 46x1077

Table 7: Maximum error of Problem 3 in Akram [28].

N

e =1/16 e =1/32 e =1/64

10
20
40

1.9%x107° 3.7x10° 7.0x10°°
26x107% 50x10% 9.9x 1076
34x1077 66x1077 13x10°6

Table 8: Maximum error of RKT3s4 of Problem 4.

N

e =1/16 e =1/32 e =1/64

10
20
40

24x107% 1.0x107* 4.0x10°°
6.1x107° 26x10° 1.0x10°°
1.5x107° 6.4x10% 25x%x10°6

Table 9: Maximum error of Problem 4 in Saini [27].
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N e=1/16 e=1/32 ¢=1/64

10 1.3x1072 32x103 34x10°*
20 1.1x107% 27x107* 22x107°
40 7.8x107° 1.8x107° 1.1x10°6

Table 10: Maximum error of Problem 4 in Akram [28].
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Iogm(Max global error)
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Iogm(Number of function evaluations)

Figure 1: The efficiency curve for RKT3s4, RKD4M, RK4, and
RK47Z for Problem 1 with N = 2¢,5 = 2, 3, 4, 5.
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