ANALYTICAL SOLUTION OF THE POSITION DEPENDENT
MASS SCHRÖDINGER EQUATION WITH A HYPERBOLIC
TANGENT POTENTIAL

Abstract


Abstract. An analytical solution of the position dependent mass Schrödinger equation with a hyperbolic tangent potential is presented. The state energy and the corresponding wave function are obtained using the Nikiforov-Uvarov method. The energy eigenvalues and eigenfunctions are discussed and results are presented for some values of potential parameters.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 32
Issue: 2
Year: 2019

DOI: 10.12732/ijam.v32i2.14

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] R.N. Costa Filho, M.P. Almeida, G.A. Farias and J.S. Andrade, Jr., Displacement operator for quantum systems with position-dependent mass, Phys. Rev. A, 84 (2011), 050102(R).
  2. [2] V.D. Dinh, Well-posedness of nonlinear fractional Schr¨odinger and wave equations in Sobolev spaces, Int. J. Appl. Math., 31, No 4 (2018), 483–525; DOI: 10.12732/ijam.v31i4.1.
  3. [3] H. Eleuch, Y.V. Rostovtsev and M.S. Abdalla, Analytical solution for one-dimensional scattering problem, Optics Communications, 284 (2011), 5457.
  4. [4] H. Eleuch, Y.V. Rostovtsev and M.O. Scully, New analytical solution of Schr¨odinger equation, Europhys. EPL, 89 (2010), 50004.
  5. [5] N. Froman and P.O. Froman, JWKB Approximation, AbeBooks, NorthHolland, Amsterdam (1965).
  6. [6] T.K. Jana and P. Roy, Potential algebra approach to position-dependent mass Schr¨odinger equations, Europhys. Lett., 87, No 3 (2009), 30003.
  7. [7] P.K. Jha, H. Eleuch and Y.V. Rostovtsev, Analytical solution to position dependent mass Schr¨odinger equation, J. Mod. Optic., 58 (2011), 652–656.
  8. [8] H.A. Kramers, Wellenmechanik und halbzahlige quantisierung, Z. Physik, 39 (1926), 828–840.
  9. [9] H.W. Lee and M.O. Scully, TheWigner phase-space description of collision processes, Found. Phys., 13, No 1 (1983), 61–72.
  10. [10] S.H. Mazharimousavi, Revisiting the displacement operator for quantum systems with position-dependent mass, Phys. Rev. A, 85 (2011), 034102(R).
  11. [11] S. Meyur, Position dependent mass for the Hulth´en plus hyperbolic cotangent potential, Bulg. J. Phys., 38 (2011), 357–363.
  12. [12] O. Mustafa and S.H. Mazharimousavi, D-dimensional generalization of the point canonical transformation for a quantum particle with positiondependent mass, J. Phys. A, 39 (2006), 10537–10547.
  13. [13] A.F. Nikiforov and V.B. Uvarov, Special Functions of Mathematical Physics, Birkhauser, Basel (1988).
  14. [14] E. Pozdeeva and A. Schulze-Halberg, Trace formula for Green’s functions of effective mass Schr¨odinger equations and N-th order Darboux transformations, Int. J. Mod. Phys. A, 23 (2008), 2635–2647.
  15. [15] R. Renan, M.H. Pacheco and A.C.S. Almeida, Treating some solid state problems with the Dirac equation, J. Phys. A, 33, No 50 (2000), L509.
  16. [16] R.W. Robinet, Quantum Mechanics, Oxford Univ. Press, Oxford (2006).
  17. [17] E.C. Romao, M.D. de Campos and L.F.M. de Moura, Solutions for problems in the finite amplitude wave propagations using the method of characteristics, Int. J. Appl. Math., 24, No 3 (2011), 339–347.
  18. [18] B. Sangar´e, A moving mesh method for the nonlinear Schr¨odinger equation, Int. J. Appl. Math., 29, No 1 (2016), 105-126; DOI:10.12732/ijam.v29i1.9.
  19. [19] A. Schmidt, Wave-packet revival for the Schr¨odinger equation with position-dependent mass, Phys. Lett. A, 353, No 6 (2006), 459–462.
  20. [20] E. Schr¨odinger, Quantisierung als eigenwertproblem, Ann. Phys. (Leipzig), 384, No 4 (1926), 361–376. ANALYTICAL SOLUTION OF THE POSITION DEPENDENT... 367
  21. [21] R. Sever, C. Tezcan, ¨O. Yesiltas and M. Bucurgat, Exact solution of effective mass Schr¨odinger equation for the Hulthen potential, Int. J. Theor. Phys., 47 (2008), 2243–2248.
  22. [22] E.L. Shishkina, Inversion of the mixed Riesz hyperbolic B-potentials, Int. J. Appl. Math., 30, No 6 (2017), 487–500, DOI: 10.12732/ijam.v30i6.3.
  23. [23] A. Sinha, Scattering states of a particle with position-dependent mass in a double heterojunction, Europhys. Lett., 96, No 2 (2011), 20008.
  24. [24] A. de Souza Dutra, Ordering ambiguity versus representation, J. Phys. A, 39, No 1 (2005), 203-210.
  25. [25] A. de Souza Dutra and C.A.S. Almeida, Exact solvability of potentials with spatially dependent effective masses, Phys. Lett. A, 275 (2000), 25–30.
  26. [26] C. Tezcan and R. Sever, A general approach for the exact solution of the Schr¨odinger equation, Int. J. Theor. Phys., 48 (2009), 337–357.
  27. [27] G. Wentzel, Eine verallgemeinerung der quantenbedingungen f¨ur die Zwecke der wellenmechanik, Z. Physik, 38 (1926), 518–529.