ANALYTICAL SOLUTION OF THE POSITION DEPENDENT
MASS SCHRÖDINGER EQUATION WITH A HYPERBOLIC
TANGENT POTENTIAL
A. Kharab1, H. Eleuch2 1Department of Applied Sciences and Mathematics
Abu Dhabi University, Abu Dhabi 59911, UAE 2Institute for Quantum Science and Engineering
Texas A&M University, College Station
Texas 77843, USA 2Department of Applied Sciences and Mathematics
Abu Dhabi University, Abu Dhabi, UAE
Abstract. An analytical solution of the position dependent mass Schrödinger
equation with a hyperbolic tangent potential is presented. The state energy
and the corresponding wave function are obtained using the Nikiforov-Uvarov
method. The energy eigenvalues and eigenfunctions are discussed and results
are presented for some values of potential parameters.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] R.N. Costa Filho, M.P. Almeida, G.A. Farias and J.S. Andrade, Jr., Displacement
operator for quantum systems with position-dependent mass,
Phys. Rev. A, 84 (2011), 050102(R).
[2] V.D. Dinh, Well-posedness of nonlinear fractional Schr¨odinger and wave
equations in Sobolev spaces, Int. J. Appl. Math., 31, No 4 (2018), 483–525;
DOI: 10.12732/ijam.v31i4.1.
[3] H. Eleuch, Y.V. Rostovtsev and M.S. Abdalla, Analytical solution for
one-dimensional scattering problem, Optics Communications, 284 (2011),
5457.
[4] H. Eleuch, Y.V. Rostovtsev and M.O. Scully, New analytical solution of
Schr¨odinger equation, Europhys. EPL, 89 (2010), 50004.
[5] N. Froman and P.O. Froman, JWKB Approximation, AbeBooks, NorthHolland, Amsterdam (1965).
[6] T.K. Jana and P. Roy, Potential algebra approach to position-dependent
mass Schr¨odinger equations, Europhys. Lett., 87, No 3 (2009), 30003.
[7] P.K. Jha, H. Eleuch and Y.V. Rostovtsev, Analytical solution to position
dependent mass Schr¨odinger equation, J. Mod. Optic., 58 (2011), 652–656.
[8] H.A. Kramers, Wellenmechanik und halbzahlige quantisierung, Z. Physik,
39 (1926), 828–840.
[9] H.W. Lee and M.O. Scully, TheWigner phase-space description of collision
processes, Found. Phys., 13, No 1 (1983), 61–72.
[10] S.H. Mazharimousavi, Revisiting the displacement operator for quantum
systems with position-dependent mass, Phys. Rev. A, 85 (2011),
034102(R).
[11] S. Meyur, Position dependent mass for the Hulth´en plus hyperbolic cotangent
potential, Bulg. J. Phys., 38 (2011), 357–363.
[12] O. Mustafa and S.H. Mazharimousavi, D-dimensional generalization of
the point canonical transformation for a quantum particle with positiondependent
mass, J. Phys. A, 39 (2006), 10537–10547.
[13] A.F. Nikiforov and V.B. Uvarov, Special Functions of Mathematical
Physics, Birkhauser, Basel (1988).
[14] E. Pozdeeva and A. Schulze-Halberg, Trace formula for Green’s functions
of effective mass Schr¨odinger equations and N-th order Darboux transformations,
Int. J. Mod. Phys. A, 23 (2008), 2635–2647.
[15] R. Renan, M.H. Pacheco and A.C.S. Almeida, Treating some solid state
problems with the Dirac equation, J. Phys. A, 33, No 50 (2000), L509.
[17] E.C. Romao, M.D. de Campos and L.F.M. de Moura, Solutions for problems
in the finite amplitude wave propagations using the method of characteristics,
Int. J. Appl. Math., 24, No 3 (2011), 339–347.
[18] B. Sangar´e, A moving mesh method for the nonlinear Schr¨odinger equation,
Int. J. Appl. Math., 29, No 1 (2016), 105-126; DOI:10.12732/ijam.v29i1.9.
[19] A. Schmidt, Wave-packet revival for the Schr¨odinger equation with
position-dependent mass, Phys. Lett. A, 353, No 6 (2006), 459–462.
[20] E. Schr¨odinger, Quantisierung als eigenwertproblem, Ann. Phys. (Leipzig),
384, No 4 (1926), 361–376.
ANALYTICAL SOLUTION OF THE POSITION DEPENDENT... 367
[21] R. Sever, C. Tezcan, ¨O. Yesiltas and M. Bucurgat, Exact solution of effective
mass Schr¨odinger equation for the Hulthen potential, Int. J. Theor.
Phys., 47 (2008), 2243–2248.
[22] E.L. Shishkina, Inversion of the mixed Riesz hyperbolic B-potentials, Int.
J. Appl. Math., 30, No 6 (2017), 487–500, DOI: 10.12732/ijam.v30i6.3.
[23] A. Sinha, Scattering states of a particle with position-dependent mass in
a double heterojunction, Europhys. Lett., 96, No 2 (2011), 20008.
[24] A. de Souza Dutra, Ordering ambiguity versus representation, J. Phys. A,
39, No 1 (2005), 203-210.
[25] A. de Souza Dutra and C.A.S. Almeida, Exact solvability of potentials with
spatially dependent effective masses, Phys. Lett. A, 275 (2000), 25–30.
[26] C. Tezcan and R. Sever, A general approach for the exact solution of the
Schr¨odinger equation, Int. J. Theor. Phys., 48 (2009), 337–357.
[27] G. Wentzel, Eine verallgemeinerung der quantenbedingungen f¨ur die
Zwecke der wellenmechanik, Z. Physik, 38 (1926), 518–529.