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Abstract: Let T1 and T2 be circle homeomorphisms with countable many
break points, that is, discontinuities in the derivative T1 and T2, with identical
irrational rotation number ρ. Assume that the total variations of logDTi, i =
1, 2 are bounded. We provide a sufficient condition for the absolute continuity of
conjugation between T1 and T2. The result extends and complements previous
obtained results in [2] and [6].
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1. Introduction

Let S1 = R \ Z be a unit circle. Let π : R → S1 denote the corresponding
projection mapping that ”winds” a straight line on the circle. An arbitrary
homeomorphism T that preserves the orientation of the unit circle S1 can ”be

Received: September 16, 2018 c© 2019 Academic Publications
§Correspondence author



178 H. Akhadkulov, H. Ibrahim, A. Saaban, S. Akhatkulov

lifted” on the straight line R in the form of the homeomorphism LT : R → R

with property LT (x + 1) = LT (x) + 1 that is connected with T by relation
π◦LT = T ◦π. This homeomorphism LT is called the lift of the homeomorphism
T and is defined up to an integer term. Poincaré proved [8] that the limit

ρ(T ) = lim
i→∞

Li
T (x)

i
mod 1,

exists and does not depend on the initial point x ∈ R, where LT is the lift
of T. Here and below, for a given map F, F i denotes its i-th iteration. The
number ρ(T ) is called the rotation number of T and it is irrational if and only
if the homeomorphism T has no periodic point. Denjoy proved [8] that if T is
an orientation preserving C1-homeomorphism with irrational rotation number ρ
and logDT is of bounded variation then T is conjugate to the rigid rotation Rρ,
that is there exists an essentially unique homeomorphism h of the circle such
that T = h−1 ◦Rρ ◦ h, here DT stands for the derivative of T. In this context,
a natural question to ask under what condition the conjugacy is smooth? The
problem of smoothness of the conjugacy of smooth diffeomorphisms has studied
very well by several authors (see [10] - [12]). In this direction a remarkable result
was obtained by Akhadkulov et. al [3]. It was shown that there exists a subset
of irrational numbers of unbounded type, such that every circle diffeomorphism
satisfying a certain Zygmund condition is absolutely continuously conjugate to
the linear rotation provided its rotation number belongs to the above set.

A natural generalizations of diffeomorphisms are piecewise smooth homeo-
morphisms which are called P−homeomorphisms.

Definition 1.1. A homeomorphism T of the circle is called P-homeo-
morphism if it satisfies the following conditions:

i) T is differentiable away from countably many points xb ∈ BP (T ), so-
called break points of T, with BP (T ) the set of break points of T on
S1, at which left and right derivatives, denoted respectively by DT− and
DT+, exist, and

DT−(xb)

DT+(xb)
6= 1

for all xb ∈ BP (T );

ii) there exist constants 0 < c1 < c2 < ∞ with c1 < DT (x) < c2 for all
x ∈ S1\BP (T ), c1 < DT−(xb) < c2 and c1 < DT+(xb) < c2 for all
xb ∈ BP (T );
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iii) logDT has bounded variation.

The ratio σT (xb) := (DT−(xb))/(DT+(xb)) is called the jump of T in xb.
The class of P-homeomorphisms was introduced by Herman [9]. He studied
the dynamics of piecewise linear circle homeomorphisms. The existence of
conjugacy of between two P-homeomorphisms follows directly from Denjoy’s
theorem. Next we consider the problem of the regularity of the conjugacy of
two P-homeomorphisms with identical irrational rotation numbers. Note that
the ergodic properties of P-homeomorphisms such as their invariant measures,
their renormalizations and also their rigidity properties are rather different from
those of diffeomorphisms. In this case the absolute continuity of the conjugacy
depends on the size of jumps, the orbits of the break points and the rotation
number. For example, in [4], it was shown that the conjugacy between two
break equivalent P-homeomorphisms with two break points and with irrational
rotation numbers is singular if their jump sizes do not coincide. For the non
break equivalent P-homeomorphisms with two break points and with irrational
rotation numbers of bounded type the conjugacy is still singular even their
jump sizes coincide [5]. Recently, two groups of scientists have independently
proved the following most general result in [1] and [7]: if the product of sizes
of two P-homeomorphisms with finite number of break points do not coincide
then the conjugacy is singular.

The purpose of this work is to obtain sufficient condition for the absolute
continuity of conjugating map of two P-homeomorphisms with countable infi-
nite number of break points. To formulate our main result let us recall some
necessary notions and facts. Hereafter, we shall always assume that ρ is irra-
tional and use its decomposition in an infinite continued fraction (see [13])

ρ =
1

k1 +
1

k2+
1
···

kn+ 1
···

:= [k1, k2, ..., kn, ...]. (1)

The value of a ”countable-floor” fraction is the limit of the sequence of rational
convergents pn/qn = [k1, k2, ..., kn]. The positive integers kn, n ≥ 1, are called
incomplete multiples and defined uniquely for irrational ρ. The mutually prime
positive integers pn and qn satisfy the recurrent relations pn = knpn−1 + pn−2

and qn = knqn−1 + qn−2 for n ≥ 1, where it is convenient to define p−1 = 0,
q−1 = 1 and p0 = 1, q0 = k1. Given a circle homeomorphism T with irrational
rotation number ρ, one may consider a marked trajectory (i.e. the trajectory of
a marked point) ξi = T iξ0 ∈ S1, where i ≥ 0, and pick out of it the sequence of
the dynamical convergents ξqn , n ≥ 0, indexed by the denominators of consec-
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utive rational convergents to ρ. We will also conventionally use ξq
−1

= ξ0 − 1.
The well-understood arithmetical properties of rational convergents and the
combinatorial equivalence between T and rigid rotation Rρ : ξ → ξ + ρ mod 1
imply that the dynamical convergents approach the marked point, alternating
their order in the following way:

ξq
−1

< ξq1 < ξq3 < ... < ξq2m+1
< ... < ξ0 < ... < ξq2m < ... < ξq2 < ξq0 .

We define the n-th fundamental interval ∆n(ξ0) as the circle arc [ξ0, T
qn(ξ0)]

for even n and as [T qn(ξ0), ξ0] for odd n. For the marked trajectory, we use the
notation ∆n

0 = ∆n(ξ0), ∆
n
i = ∆n(ξi) = T i∆n

0 . It is well known, that the set
Pn(ξ0, T ) = Pn(T ) of intervals with mutually disjoint interiors defined as

Pn(T ) =
{
∆n−1

i , 0 ≤ i < qn; ∆n
j , 0 ≤ j < qn−1

}

determines a partition of the circle for any n. The partition Pn(T ) is called the
n-th dynamical partition of the point ξ0. Obviously the partition Pn+1(T ) is a
refinement of the partition Pn(T ): indeed the intervals of order n are members
of Pn+1(T ) and each interval ∆n−1

i ∈ Pn(T ) 0 ≤ i < qn, is partitioned into
kn+1 + 1 intervals belonging to Pn+1(T ) such that

∆n−1
i = ∆n+1

i ∪

kn+1−1⋃

s=0

∆n
i+qn−1+sqn

.

Let T1 and T2 be P-homeomorphisms with identical irrational rotation num-
ber ρ.We consider dynamical partitions Pn(ξ, T1) = Pn(T1) and Pn(h(ξ), T2) =
Pn(T2) appropriate to the homeomorphisms T1 and T2. Denote by ∆̂n intervals
of partition of Pn(T2). Since the function h is a conjugation function between T1

and T2 we have h(∆n) = ∆̂n for any ∆n ∈ Pn(T1). Denote by |A| the Lebesgue
measure of the corresponding set of A ⊂ S1.

Our main result is the following theorems.

Theorem 1.2. Let T1 and T2 be P-homeomorphisms with the identi-

cal irrational rotation numbers with continued fraction expansion ρ1 = ρ2 =
[k1, k2, ..., kn, ...]. If there exists a sequence (τn) such that

∑∞
n=1(knτn)

2 < ∞
and ∣∣∣ |∆1|

|∆2|
−

|∆̂1|

|∆̂2|

∣∣∣ ≤ τn (2)

for each pair of adjacent intervals ∆1, ∆2 ∈ Pn(T1), for all n > 1. Then the

conjugation h between T1 and T2 is an absolutely continuous function.
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Remark

• Note that our main theorems extend the main result of [6]. In [6], there
was obtained a sufficient condition for the absolute continuity of conju-
gation of two P-homeomorphisms with finite number of break points and
with the same bounded type irrational rotation numbers. In our main
results, the number of break points of P-homeomorphisms is countable
infinite and the rotation numbers are any irrational that is not of bounded
type.

• Our result complements the main result of [2]. Indeed, in [2], there was
obtained a necessary condition for absolute continuity of the invariant
measure of P-homeomorphisms with countable infinite number of break
points. It is well known that the invariant measure is a conjugacy between
a circle homeomorphism and linear rotation.

• We will use the consideration of the theory of martingales in the proofs
of main theorems and the proofs follow closely that of [6]. The idea of
using the theory of martingales was established in [11].

2. Martingales and Martingale Convergence Theorem

Our objective in this section is to develop the fundamentals of the theory of
martingales, and prepare for the main results and applications that will be
presented in the subsequent sections.

Definition 2.1. Let (X,F) be a measurable space. A sequence (Fm) of
σ-algebras on X is said to be a filtration in F, if

F1 ⊆ F2 ⊆ ... ⊆ F.

Statement 1. The sequence of algebras generated by dynamical partitions,
which is also denoted by (Pm) (by abuse of notation) is a filtration in B, where
B is a Borel σ-algebra on S1.

Definition 2.2. Let (Rm) be a sequence of random variables on a mea-
surable space (X,F) and (Fm) a filtration in F. We say that (Rm) is adapted
to (Fm) if, for each positive integer m, Rm is Fm-measurable.
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Denote by E(R|F) conditional expectation of random variables R with re-
spect to partition F.

Definition 2.3. Let (Rm) be a sequence of random variables on a proba-
bility space (X,F,P) and (Fm) a filtration in F. The sequence (Rm) is said to
be a martingale with respect to (Fm) if, for every positive integer m,

(i) (Rm) is integrable;

(ii) (Rm) is adapted to (Fm);

(iii) E(Rm+1|Fm) = Rm.

Lemma 2.4. (see [14]) Let (Rm) be a sequence of random variables on a
probability space (X,F,P). If sup

m
E(|Rm|p) < ∞ for some p > 1 and (Rm) is a

martingale, then there exists an integrable R ∈ L1(X,F) such that

lim
m→∞

Rm = R (a.e P) and Rm → R in L1 − norm.

Suppose f is a homeomorphism (not necessary to be P-homeomorphism)
of the circle S1. Using the homeomorphism f and sequence of dynamical par-
titions (Pm) we define the sequence of random variables on the circle which is
generating a martingales. For any m ≥ 1 we set

Rm(x) =
|f(∆m)|

|∆m|
, if x ∈ ∆m, ∆m ∈ Pm.

Lemma 2.5. The sequence (Rm) of random variables is a martingale with
respect to (Pm).

Proof. To prove the martingale, it suffices to check E(Rm+1|Pm) = Rm, for
any m ≥ 1, because the sequence of random variables (Rm) is sequence of step
functions, so the sequence of step functions is integrable and adapted to (Pm).
Denote by χI indicator function of interval I. Using definition of conditional
expectation of random variables (Rm) with respect to partition (Pm) we get

E(Rm+1|Pm) =

qm−1−1∑

i=0

E(Rm+1|∆
m
i )χ∆m

i
+

qm−1∑

i=0

E(Rm+1|∆
m−1
i )χ∆m−1

i
. (3)

Now, we calculate each sum of (3) separately. Note, that each interval of Pm

order m are members of Pm+1 and each interval ∆m−1
i ∈ Pm, 0 ≤ i < qm, is
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partitioned into km+1 + 1 intervals belonging to Pm+1 such that

∆m−1
i = ∆m+1

i ∪

km+1−1⋃

s=0

∆m
i+qm−1+sqm.

Using this we get:

E(Rm+1|∆
m
i ) =

1

|∆m
i |

∫

∆m
i

Rm+1(x)ℓ(dx) =
1

|∆m
i |

∫

∆m
i

Rm(x)ℓ(dx) (4)

E(Rm+1|∆
m−1
i ) =

1

|∆m−1
i |

∫

∆m−1

i

Rm+1(x)ℓ(dx)

=
1

|∆m−1
i |

[ ∫

∆m+1

i

Rm+1(x)ℓ(dx)
]
+ (5)

1

|∆m−1
i |

[ km+1−1∑

s=0

∫

∆m
i+qm−1+sqm

Rm+1(x)ℓ(dx)
]
=

1

|∆m−1
i |

∫

∆m−1

i

Rm(x)ℓ(dx).

Finally, summing (3), (4) and (5) we get

E(Rm+1|Pm) =

qm−1−1∑

i=0

Rm(x)χ∆m
i
+

qm−1∑

i=0

Rm(x)χ∆m−1

i
= Rm.

The following lemmas will be used in the proof of main result.

Lemma 2.6. Given a, b, c, d > 0 the following inequalities hold

min
{a

b
,
c

d

}
≤

a+ c

b+ d
≤ max

{a

b
,
c

d

}
.

Proof. Consider points A = (a, b), B = (c, d) and C = (a+ c, b+ d) on the
plan xOy. The slope of the ray OC lies between slops of rays OA and OB.



184 H. Akhadkulov, H. Ibrahim, A. Saaban, S. Akhatkulov

3. Proof of Main Theorems

3.1. Necessary lemmas

Let h be the conjugation homeomorphism between T1 and T2, i.e. h ◦ T1 =
T2 ◦ h. Without loss of generality we assume h(0) = 0. Consider the dynamical
partition Pm(T1). Define sequence of random variables (Rm) on the S1, by this
formula:

Rm(x) =
|h(∆m)|

|∆m|
, if x ∈ ∆m, ∆m ∈ Pm(T1).

Denote by Θm(x) = Rm(x)−Rm−1(x), m ≥ 1 and R0(x) :≡ 0, x ∈ S1.

Lemma 3.1. Let T1 and T2 satisfy the conditions of Theorem 1.2. We
have

|Θm(x)| ≤ kmτm, x ∈ S1

for all m ≥ 1, where the sequence (τm) is defined in Theorem 1.2.

Proof. For a given x ∈ ∆m we denote Rm(∆m) := Rm(x). Utilizing Lemma
2.6 and the inequality (2) we get

Rm(∆m−1)−Rm(∆m(x)) ≤ max
0≤s≤km

Rm(∆m
s )−Rm(∆m(x)) ≤ kmτm, (6)

and

Rm(∆m−1)−Rm(∆m(x)) ≥ Rm(∆m(x))− min
0≤s≤km

Rm(∆m
s ) ≥ −kmτm (7)

where ∆m(s), 0 ≤ s ≤ km are sub-intervals of ∆m−1 and ∆m(x) is the sub-
interval of ∆m−1 which containing the point x. Combining the inequalities (6)
and (7) we get

|Θm(x)| ≤ kmτm, x ∈ S1.

Lemma 3.2. Let T1 and T2 satisfy the conditions of Theorem 1.2. We
have

sup
m

E(R2
m) < ∞.
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Proof. First we show that Θm(x) and Rm−1(x) is orthogonal i.e.

∫

S1

Θm(x)Rm−1(x)dx = 0. (8)

Indeed, by the definitions of Θm and Rm−1 we have

∫

S1

Θm(x)Rm−1(x)dx =

∫

S1

Rm(x)Rm−1(x)dx−

∫

S1

R2
m−1(x)dx. (9)

Now we evaluate the first integral of the right hand site of (9). Since Rm−1 is
a constant on the intervals of the partition Pm−1(T1) we have

∫

S1

Rm(x)Rm−1(x)dx =
∑

∆∈Pm−1(T1)

Rm−1(∆)

∫

∆
Rm(x)dx

=
∑

∆∈Pm−1(T1)

Rm−1(∆)

[
∑

I⊂∆
I∈Pm(T1)

∫

I

Rm(x)dx

]

=
∑

∆∈Pm−1(T1)

Rm−1(∆)

[
∑

I⊂∆
I∈Pm(T1)

|I|Rm(I)

]
=

∑

∆∈Pm−1(T1)

|∆|R2
m−1(∆)

=
∑

∆∈Pm−1(T1)

∫

∆
R2

m−1(x)dx =

∫

S1

R2
m−1(x)dx.

From this and (9) it follow (8). Since Θm(x) and Rm−1(x) is orthogonal we get

‖Rm‖2L2
= 〈Θm(x)−Rm−1 ,Θm(x)−Rm−1〉 = ‖Θm‖2L2

+ ‖Rm−1‖
2
L2
.

By Lemma 3.1 and assumptions of Theorem 1.2 it imply

‖Rm‖2L2
≤

m∑

n=1

knτn.

Hence

sup
m

E(R2
m) ≤

√√√√
∞∑

n=1

knτn.
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3.2. Proof of Theorem 1.2.

Proof. By Lemma 2.5 the sequence (Rm) of random variables is a martin-
gale with respect to (Pm). From Lemmas 2.4 and 3.2 it follow that the sequence
of random variables (Rm) converges to some function R in L1 norm. We show
that R = Dh almost everywhere on S1. Denote by αm and βm the end-points
of interval ∆m of dynamical partition Pm(T1). By definition of Rm we get

|h(x)−

∫ x

0
Rm(x)dx| ≤ |h(x)− h(αm)|+

|h(∆m)|

|∆m|
|x− αm| ≤ 2|h(∆m)|.

Using the last inequality we obtain

|h(x)−

∫ x

0
R(x)dx| ≤ |h(x) −

∫ x

0
Rm(x)dx| +

∫ x

0
|R(x)−Rm(x)|dx ≤

2|h(∆m)|+ ‖Rm −R‖L1
.

Taking the limit when m → ∞ we get

h(x) =

∫ x

0
R(x)dx.

Since R ∈ L1(S
1, dℓ) we can conclude that h is an absolutely continuous func-

tion and Dh(x) = R(x) almost everywhere on S1. Thus Theorem 1.2 is com-
pletely proved.
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