ABOUT THE WORDS BY k TO k ERASURE OF LETTER AND
THE WORDS OF ERASED LETTERS: STURMIAN CASE

Abstract

In this paper, we define from an infinite word u, the word by k to k erasure of a letter and the word of the erased letters. Then, we study the classical complexity and the palindromic complexity of these words in the case of modulo-recurrent words and more specifically in the Sturmian case.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 32
Issue: 2
Year: 2019

DOI: 10.12732/ijam.v32i2.3

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] J.-P. Allouche, Sur la complexit´e des suites infinies, Bull. Belg. Math. Soc. Simon Stevin, 1 (1994), 133-143.
  2. [2] J.-P. Allouche, M. Baake, J. Cassaigne, D. Damanik, Palindrome complexity, Theoret. Comput. Sci., 292 (2003), 9-31.
  3. [3] M. Barro, I. Kabor´e, T. Tapsoba, On the words by k to k insertion of a letter in Sturmian words, International Journal of Applied Mathematics 30, No 5 (2017), 387-400; doi: 10.12732/ijam.v30i5.3.
  4. [4] J. Berstel, Sturmian and episturmian words (a survery of some recent resultats), In: Proc. of CAI 2007, LNCS 4728, Springer-Verlag, 2007.
  5. [5] J. Cassaigne, I. Kabor´e, T. Tapsoba, On a new notion of complexity on infinite words, Acta Univ. Sapentiae, Mathematica, 2 (2010), 127-136.
  6. [6] E.M. Coven, Sequences with minimal block growth, Math. Syst. Theory, 8 (1975), 376-382.
  7. [7] E.M. Coven, G.A. Hedlund, Sequences with minimal block growth, Math. Syst. Theory, 7 (1973), 138-153.
  8. [8] X. Droubay, G. Pirillo, Palindromes and Sturmian words, Theoret. Comput. Sci., 223, (1999), 73-85.
  9. [9] I. Kabor´e, About k to k insertion words of Sturmian words, Intern. J. Pure and Appl. Math., 79, No 4 (2012), 561-572.
  10. [10] I. Kabor´e, T. Tapsoba, Combinatoire des mots r´ecurrents de complexit´es n + 2, RAIRO-Theo. Inf. Appl. 41 (2007), 425-446.
  11. [11] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, 2002.