COMMON FIXED POINT THEOREM IN b-MENGER
SPACES WITH A FULLY CONVEX STRUCTURE

Abstract

We prove, in b-Menger spaces [9] the existence of common fixed point for nonexpansive mappings in fully convex b-Menger space by using the normal structure property. We provide examples to analyze and illustrate our main results.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 32
Issue: 2
Year: 2019

DOI: 10.12732/ijam.v32i5.1

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] L.M. Blumenthal, Distance Geometries: A Study of the Development of Abstract Metrics. University of Missouri Studies, (1938).
  2. [2] L.M. Blumenthal, Theory and Applications of Distance Geometries, Claremont Press, Oxford, (1953).
  3. [3] L.M. Blumenthal, K. Menger, Studies in Geometry, W.H.Freeman and Co., San Francisco, (1970). 238 A. Mbarki, R. Oubrahim
  4. [4] M.S. Brodskii, D.P. Milman, On the center of a convex set, Dokl. Akad. Nauk. SSSR, 59 (1948), 837-840.
  5. [5] R.J. Egbert, Products and quotients of probabilistic metric spaces, Pacific J. Math, 24 (1968), 437-455.
  6. [6] O. Hadˇzi´c, Common fixed point theorems in probabilistic metric spaces with a convex structure, Zb. Rad. Prirod-Mat.Fak. Ser. Mat., 18 (1987), 165-178.
  7. [7] W.A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72 (1965), 1004-1006.
  8. [8] K. Menger, Untersuchungen¨uber allgemeine Metrik, Math. Ann., 100 (1928), 75-163.
  9. [9] A. Mbarki, R. Oubrahim, Probabilistic b-metric spaces and nonlinear contractions, Fixed Point Theory Appl., 2017 (2017), 15-29.
  10. [10] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci., 28 (1942), 535-7.
  11. [11] K. Menger, G´eom´etrie g´en´erale, M´emor. Sci. Math., Gauthier-Villars, Paris, 124, (1954).
  12. [12] S. Prus, Geometrical background of metric fixed point theory. In: W.A. Kirk, B. Sims (Eds), Handbook of Metric Fixed Point Theory, Springer, Dordrecht (2001).
  13. [13] B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathimatics, 5 (1983).
  14. [14] J.N. Sini´sa, R. M. Nikoli´c, N.A. Baba´cev, A common fixed point theorem in strictly convex Menger PM-spaces, Filomat, 28, No 4 (2014), 735-743.
  15. [15] T. Wataru, A convexity in metric spaces and nonexpansive mappings, I. Kodai Math. Sem. Rep., 22 (1970), 142-149.