BOUNDARY VALUE PROBLEM FOR A TWO-TIME-SCALE
NONLINEAR DISCRETE SYSTEM

Abstract

In this work, an algorithmic procedure is given to implement the solution of a two-point boundary value problem for a nonlinear two-time-scale discrete-time system.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 32
Issue: 2
Year: 2019

DOI: 10.12732/ijam.v32i2.6

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] A. Golev, S. Hristova, S. Nenov, Monotone-iterative method for solving antiperiodic nonlinear boundary value problems for generalized delay difference equations with maxima, Abstr. Appl. Anal., 2013 (2013), Article ID 571954. 246 T. Zerizer
  2. [2] S.G. Krantz, H.R. Parks, The Implicit Function Theorem, History, Theory, and Applications, Birkh¨auser, Basel (2003).
  3. [3] G.A. Kurina, M.G. Dmitriev, D.S. Naidu, Discrete singularly perturbed control problems (A Survey), Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms., 24 (2017), 335-370.
  4. [4] A.N. Kvitko, A method for solving boundary value problems for nonlinear control systems in the class of discrete controls, Differentsialnye Uravneniya, 44, No 11 (2008), 1499-1509.
  5. [5] A.N. Kvitko, O.S. Firyulina, A.S. Eremin, Solving boundary value problem for a nonlinear stationary controllable system with synthesizing control, Math. Probl. Eng., 2017 (2017), Article ID 8529760.
  6. [6] T.H.S. Li, J.S. Chiou, and F.C. Kung, Stability bounds of singularly perturbed discrete systems, IEEE Trans. Autom. Control, 44, No 10 (1999), 1934-1938.
  7. [7] R.L. Mishkov, Generalization of the formula of Faa Di Bruno for a composite function with a vector argument, Int. J. Math. Math. Sci., 24 (2000), 481-491.
  8. [8] P.Y.H. Pang, R.P. Agarwal, Monotone iterative methods for a general class of discrete boundary value problems, Computers Math. Applic., 28 (1994), 243-254.
  9. [9] K.S. Park, J.T. Lim, Analysis of nonstandard nonlinear singularly perturbed discrete systems, IEEE Trans Circuits Syst-II: Express Briefs, 58, No 5 (2011).
  10. [10] T. Sari, T. Zerizer, Perturbations for linear difference equations, J. Math. Anal. Appl., 1 (2005), 43-52.
  11. [11] T. Zerizer, Perturbation method for linear difference equations with small parameters, Adv. Differ. Equ., 11 (2006), 1-12, Article ID 19214.
  12. [12] T. Zerizer, Perturbation method for a class of singularly perturbed systems, Adv. Dyn. Syst. Appl., 9, No 2 (2014), 239-248.
  13. [13] T. Zerizer, Problems for a linear two-time-scale discrete model, Adv. Dyn. Syst. Appl., 10, No 1 (2015), 85-96. BOUNDARY VALUE PROBLEM FOR A TWO-TIME-SCALE... 247
  14. [14] T. Zerizer, Boundary value problems for linear singularly perturbed discrete systems, Adv. Dyn. Syst. Appl., 10, No 2 (2015), 215-224.
  15. [15] T. Zerizer, Boundary value problem for a three-time-scale singularly perturbed discrete system, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 23 (2016), 263-272.
  16. [16] T. Zerizer, On a class of perturbed discrete nonlinear systems, GJPAM, 14, No 10 (2018), 1407-1418.
  17. [17] T. Zerizer, A class of nonlinear perturbed difference equations, Int. J. Math. Anal., 12, No 5 (2018), 235-243.
  18. [18] T. Zerizer, A class of multi-scales nonlinear difference equations, Appl. Math. Sci., 12, No 19 (2018), 911-919.
  19. [19] T. Zerizer, Nonlinear perturbed difference equations, J. Nonlinear Sci. Appl., 11 (2018), 1355-1362. 248