ON THE IRREDUCIBLITY OF THE REPRESENTATION OF
THE PURE BRAID GROUP ON THREE STRANDS

Abstract

Consider a representation $\rho:B_{3}\rightarrow GL_{6}(\mathbb{C})$ constructed by M. Al-Tahan and M. Abdulrahim. We construct a representation $\phi$ equivalent to the restriction of $\rho$ on $P_{3}$ and show that $\phi$ is a direct sum of irreducible subrepresentations, which are not equivalent to the reduced Burau representation restricted to $P_{3}$. Also, we show that the subrepresentations of $\phi$ are unitary relative to unique invertible hermitian matrices.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 32
Issue: 2
Year: 2019

DOI: 10.12732/ijam.v32i2.7

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] M.N. Abdulrahim, Complex specializations of the reduced Gassner representation of the pure braid group, Proc. of American Mathematical Society, 125, No 6 (1997), 1617-1624.
  2. [2] M. Al-Tahan, M.N. Abdulrahim, A new six dimensional representation of the braid group on three strands and its irreducibility and unitarizability, British J. of Mathematics and Computer Science, 3, No 3 (2013), 275-280.
  3. [3] J.S. Birman, Braids, Links and Mapping Class Groups, Annals of Mathematical Studies # 82, Princeton Univ. Press, New Jersy (1975).
  4. [4] W. Burau, Uber Zopfgruppen und gleischsinning verdrillte Verkettungen, Abh. Math. Sem. Ham. II (1936), 171-178.
  5. [5] E. Formanek, Braid group representations of low degree, Proc. London Math. Soc., 73, No 3 (1996), 279-322.
  6. [6] V.F.R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math., 126 (1987), 335-388.
  7. [7] I. Schur, Neue Begr¨undung der Theorie der Gruppencharaktere, Sitzungsberichte der K¨oniglich Preußischen Akademie der Wissenschaften zu Berlin (1905), 406-432.
  8. [8] C. Squier, The Burau representation is unitary, Proc. Amer. Math. Soc., 90 (1984), 199-202.