International Journal of Applied Mathematics

Volume 32 No. 5 2019, 775-784

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v32i5.5

SOME RESULTS ON UNIVALENT HOLOMORPHIC FUNCTIONS BASED ON q-ANALOGUE OF NOOR OPERATOR

Shahram Najafzadeh

Department of Mathematics Payame Noor University P.O. Box: 19395–3697, Tehran, IRAN

Abstract: The main object of this paper is to define a new sublclass of univalent holomorphic functions along with the recently defined q-analogue of Noor operator. We obtained a number of useful properties such as: coefficient bounds, extreme points, radii of starlikeness, convexity and close-to-convexity and weighted mean.

AMS Subject Classification: 30C45, 30C50

Key Words: univalent function, convolution, of Noor operator, coefficient estimate, convex set, extreme point, radii properties

1. Preliminaries

Let \mathcal{A} be the class of all functions f(z) which are analytic in $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$ and have the following Taylor series representation:

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k. \tag{1}$$

Let us denote by \mathcal{T} the subclass of \mathcal{A} consisting of functions with negative coefficients of the form

$$f(z) = z - \sum_{k=2}^{\infty} a_k z^k \qquad (a_k \geqslant 0).$$
 (2)

For functions f and g which are analytic in \mathbb{U} and have the form (2), we define

Received: July 10, 2019

© 2019 Academic Publications

the convolution (or Hadamard product) of f and g by:

$$(f * g)(z) = z - \sum_{k=2}^{\infty} a_k b_k z^k, \qquad (z \in \mathbb{U}).$$
(3)

Now, we provide some notations regarding the q-calculus used in this article, see [1, 3] and [4].

For 0 < q < 1, the *q*-derivative of f is defined by:

$$D_q f(z) = \frac{f(zq) - f(z)}{z(q-1)} \qquad (z \neq 0).$$
 (4)

We can easily conclude that:

$$D_q\left(\sum_{k=2}^{\infty} a_k z^k\right) = \sum_{k=2}^{\infty} [k, q] a_z z^{k-1} \quad (k \in \mathbb{N}, \quad z \in \mathbb{U}), \tag{5}$$

where

$$[k,q] = \frac{1-q^k}{1-q} = 1 + \sum_{t=1}^{k-1} q^t \qquad ([0,q] = 0), \tag{6}$$

and

$$[k,q] = \begin{cases} 1 &, & k = 0, \\ [1,q][2,q] \cdots [k,q] &, & k \in \mathbb{N}. \end{cases}$$
 (7)

Also, the q-generalization of the Pochhammer symbol for y > 0 is defined by:

$$[y,q]_k = \begin{cases} [y,q][y+1,q] \cdots [y+k-1,q] &, & k \in \mathbb{N}, \\ 1 &, & k = 0. \end{cases}$$
(8)

For $\mu > -1$ and $f(z) \in \mathcal{T}$, we consider the q-analogue of Noor integral operator as follows:

$$\mathcal{N}_{q}^{\mu}f(z) = \mathcal{T}_{q,\mu+1}^{-1}(z) * f(z) = z - \sum_{k=2}^{\infty} \Psi_{k-1} a_k z^k \quad (z \in \mathbb{U}), \tag{9}$$

where

$$\mathcal{T}_{q,\mu+1}^{-1}(z) * \mathcal{T}_{q,\mu+1}(z) = zD_q f(z), \tag{10}$$

$$\mathcal{T}_{q,\mu+1}(z) = z - \sum_{k=2}^{\infty} \frac{[\mu+1, q]_{k-1}}{[k, q]!} z^k, \tag{11}$$

and

$$\Psi_{k-1} = \frac{[k,q]!}{[\mu+1,q]_{k-1}},\tag{12}$$

see [2].

It is clear that $\mathcal{N}_q^0 f(z) = z D_q f(z)$, $\mathcal{N}_q^1 f(z) = f(z)$ and

$$\lim_{q \to 1^{-}} \mathcal{N}_{q}^{\mu} f(z) = z - \sum_{k=2}^{\infty} \frac{k!}{(\mu + 1)_{k-1}} a_{k} z^{k}, \tag{13}$$

which is the familiar Noor integral operator, see [5] and [6].

For $0 \le \alpha \le 1$ and $0 \le \beta < 1$, the function $f(z) \in \mathcal{T}$ is in the class $\mathcal{N}_q^{\mu}(\alpha, \beta)$ if it satisfies:

$$\operatorname{Re}\left\{\frac{zD_{q}\left(\mathcal{N}_{q}^{\mu}(\alpha,\beta)\right) + \alpha z^{2}D_{q}^{2}\left(\mathcal{N}_{q}^{\mu}f(z)\right)}{\alpha zD_{q}\left(\mathcal{N}_{q}^{\mu}f(z)\right) + (1-\alpha)\mathcal{N}_{q}^{\mu}f(z)}\right\} > \beta,\tag{14}$$

where D_q and \mathcal{N}_q^{μ} are defined in (4) and (9) respectively. Also $D_q^2(\mathcal{N}_q^{\mu}f(z))$ means $D_q[D_q(\mathcal{N}_q^{\mu}f(z))]$.

2. Main results

In this section, we obtain coefficient bounds for functions in the class $\mathcal{N}_q^{\mu}(\alpha, \beta)$ and show that this class is a convex set.

Theorem 1. $f(z) \in \mathcal{T}$ is in the class $\mathcal{N}_q^{\mu}(\alpha, \beta)$ if and only if:

$$\sum_{k=2}^{\infty} \Psi_{k-1} \Big([k, q] \Big(1 + \alpha [k, q] - \alpha \beta \Big) + \beta (1 - \alpha) \Big) \alpha_k \leqslant 1 - \beta, \tag{15}$$

where Ψ_{k-1} and [k,q] are given by (12) and (6), respectively.

Proof. By making use of (4) and (5), we obtain:

$$D_q(\mathcal{N}_q^{\mu}(\alpha,\beta)) = 1 - \sum_{k=2}^{\infty} [k,q] \Psi_{k-1} a_k z^{k-1},$$
 (16)

$$D_q^2(\mathcal{N}_q^{\mu}f(z)) = -\sum_{k=2}^{\infty} [k, q]^2 \Psi_{k-1} a_k z^{k-2}, \tag{17}$$

where [k, q] and Ψ_{k-1} are defined in (6) and (12), respectively. By replacing (16) and (17) in (14) we have:

Re
$$\left\{ \frac{z - \sum_{k=2}^{\infty} [k, q] \Psi_{k-1} a_k z^k - \sum_{k=2}^{\infty} \alpha[k, q]^2 \Psi_{k-1} a_k z^k}{A} \right\} > \beta$$

where

$$A = \alpha z - \sum_{k=2}^{\infty} \alpha[k, q] \Psi_{k-1} a_k z^k + (1 - \alpha) z - \sum_{k=2}^{\infty} (1 - \alpha) \Psi_{k-1} a_k z^k,$$

or

$$\operatorname{Re}\left\{\frac{z - \sum_{k=2}^{\infty} [k, q] \Psi_{k-1} (1 + \alpha[k, q]) a_k z^k}{z - \sum_{k=2}^{\infty} \Psi_{k-1} (\alpha([k, q] - 1) + 1) a_k z^k}\right\} > \beta.$$

By choosing the values of z on the real axis and then letting $z \to 1^-$ through real values, we get:

$$1 - \beta - \sum_{k=2}^{\infty} \left[[k, q] \Psi_{k-1} (1 + \alpha [k, q]) - \beta \Psi_{k-1} (\alpha ([k, q] - 1) + 1) \right] a_k \ge 0,$$

or

$$\sum_{k=2}^{\infty} \Psi_{k-1} \Big[[k, q] \big(1 + \alpha [k, q] - \alpha \beta \big) - \beta (1 - \alpha) \Big] a_k \leqslant 1 - \beta.$$

Conversely, suppose that (15) holds true. We will show that (14) is satisfies and so $f \in \mathcal{N}_q^{\mu}(\alpha, \beta)$. Using the fact that $\text{Re}\{W\} > \beta$ if and only if $|W - (1 - \beta)| < |W - (1 - \beta)|$, it is enough to show that:

$$L = \left| \frac{zD_q(\mathcal{N}_q^{\mu} f(z)) + \alpha z^2 D_q^2(\mathcal{N}_q^{\mu} f(z))}{\alpha z D_q(\mathcal{N}_q^{\mu} f(z)) + (1 - \alpha) \mathcal{N}_q^{\mu} f(z)} - 1 - \beta \right|$$

$$<\left|\frac{zD_q\left(\mathcal{N}_q^{\mu}f(z)\right)+\alpha z^2D_q^2\left(\mathcal{N}_q^{\mu}f(z)\right)}{\alpha zD_q\left(\mathcal{N}_q^{\mu}f(z)\right)+(1-\alpha)\mathcal{N}_q^{\mu}f(z)}+1-\beta\right|=R.$$

But, if $\alpha z D_q(\mathcal{N}_q^{\mu} f(z)) + (1 - \alpha) \mathcal{N}_q^{\mu} f(z) = J$, then we have:

$$L = \frac{1}{|J|} \Big[z D_q \big(\mathcal{N}^\mu_q f(z) \big) + \alpha z^2 D_q^2 \big(\mathcal{N}^\mu_q f(z) \big) - (1+\beta) J \Big].$$

By (16) and (17) we get:

$$\begin{split} L &= \frac{1}{|J|} \left[\beta z - \sum_{k=2}^{\infty} \Psi_{k-1} \Big[[k,q] \big(1 + \alpha [k,q] + (1-\beta) \big) \right. \\ &+ (1-\beta) (1-\alpha) \Big] a_k z^k \Bigg] \\ &< \frac{|z|}{|J|} \left[\beta + \sum_{k=2}^{\infty} \Psi_{k-1} \Big[[k,q] \big(1 + \alpha [k,q] + (1-\beta) \big) \right. \\ &+ (1-\beta) (1-\alpha) a_k |z|^{k-1} \Bigg], \end{split}$$

and

$$R = \frac{1}{|J|} |zD_{q}(\mathcal{N}_{q}^{\mu}f(z)) + \alpha z^{2}D_{q}^{2}(\mathcal{N}_{q}^{\mu}f(z)) + (1-\beta)J|$$

$$= \frac{1}{|J|} |(2-\beta)z - \sum_{k=2}^{\infty} \Psi_{k-1}([k,q](1+\alpha[k,q]+(1-\beta)))$$

$$+ (1-\beta)(1-\alpha))a_{k}z^{k}|$$

$$\geqslant \frac{|z|}{|J|} [(2-\beta) - \sum_{k=2}^{\infty} \Psi_{k-1}([k,q](1+\alpha[k,q]+(1-\beta)))$$

$$+ (1-\beta)(1-\alpha))a_{k}|z|^{k-1}.$$

when $z \in \partial \mathbb{U} = \{z \in \mathbb{C} : |z| = 1\}$, it is easy to verify that R - L > 0, if (15) holds and so the proof is complete.

Remark. The result (15) is sharp for the function F(z) given by:

$$F(z) = z - \frac{1 - \beta}{\Psi_1([2, q][k, q](1 + \alpha[k, q] - \alpha\beta) + \beta(1 - \alpha))} z^2,$$
 (18)

where $\Psi_1 = \frac{[2,q]!}{[\mu+1,q]_1}$ and $[2,q] = \frac{1-q^2}{1-q} = 1+q$.

Corollary 2. If $f(z) \in \mathcal{N}_q^{\mu}(\alpha, \beta)$, then for k = 1, 2, ..., we have:

$$a_k \leqslant \frac{1 - \beta}{\Psi_{k-1}([k, q](1 + \alpha[k, q] - \alpha\beta) + \beta(1 - \alpha))}.$$
 (19)

Theorem 3. $\mathcal{N}_q^{\mu}(\alpha,\beta)$ is a convex set.

Proof. We must show that, if the functions $f_t(z)$, t = 1, 2, ..., m, be in the class $\mathcal{N}_q^{\mu}(\alpha, \beta)$, then the function $h(z) = \sum_{t=1}^m \lambda_t f_t(z)$ for λ_t and $\sum_{t=1}^m \lambda_t = 1$, is also in $\mathcal{N}_q^{\mu}(\alpha, \beta)$.

By definition of h(z), we conclude:

$$h(z) = \sum_{t=1}^{m} \lambda_t \left(z - \sum_{k=2}^{\infty} a_{k,t} z^k \right)$$
$$= z - \sum_{k=2}^{\infty} \left(\sum_{t=1}^{m} \lambda_t a_{k,t} \right) z^k.$$

But from Theorem 1, we have:

$$\sum_{k=2}^{\infty} \Psi_{k-1} \Big([k, q] \Big(1 + \alpha [k, q] - \alpha \beta \Big) + \beta (1 - \alpha) \Big) \Big(\sum_{t=1}^{m} \lambda_t a_{k,t} \Big)$$

$$= \sum_{t=1}^{m} \lambda_t \Big\{ \sum_{k=2}^{\infty} \Psi_{k-1} \Big([k, q] \Big(1 + \alpha [k, q] - \alpha \beta \Big) + \beta (1 - \alpha) \Big) a_{k,t} \Big\}$$

$$\leqslant \sum_{t=1}^{m} \lambda_t (1 - \beta) = 1 - \beta,$$

which completes the proof.

3. Extereme points and some properties of $\mathcal{N}_q^{\mu}(\alpha,\beta)$

In the last section, we obtain extreme points of $\mathcal{N}_q^{\mu}(\alpha,\beta)$ and investigate some properties of the some class.

Theorem 4. Let $f_1(z) = z$ and

$$f_k(z) = z - \frac{(1-\beta)z^k}{\Psi_{k-1}([k,q](1+\alpha[k,q]-\alpha\beta)+\beta(1-\alpha))},$$

where $k = 2, 3, \ldots$ Then $f \in \mathcal{N}_q^{\mu}(\alpha, \beta)$ if and only if it can be expressed in the form $f(z) = \sum_{k=1}^{\infty} t_k f_k(z)$, where $t_k \ge 0$ and $\sum_{k=1}^{\infty} t_k = 1$. In particular, the extreme points of $\mathcal{N}_q^{\mu}(\alpha, \beta)$ are functions $f_1(z)$ and $f_k(z)$, where $k = 2, 3, \ldots$

Proof. Let f be expressed as in the above. This means that we can write:

$$f(z) = \sum_{k=1}^{\infty} t_k f_k(z) = t_1 f_1(z) + \sum_{k=2}^{\infty} t_k f_k(z)$$

$$= t_1 z + \sum_{k=2}^{\infty} t_k z$$

$$- \sum_{k=2}^{\infty} \frac{(1-\beta)t_k}{\Psi_{k-1}([k,q](1+\alpha[k,q]-\alpha\beta) + \beta(1-\alpha))} z^k$$

$$= z \sum_{k=1}^{\infty} t_k - \sum_{k=2}^{\infty} d_k z^k,$$

where

$$d = \frac{(1-\beta)t_k}{\Psi_{k-1}([k,q](1+\alpha[k,q]-\alpha\beta)+\beta(1-\alpha))}.$$

Therefor $f \in \mathcal{N}_q^{\mu}(\alpha, \beta)$ since by Theorem 1, we have:

$$\sum_{k=2}^{\infty} \frac{\Psi_{k-1}([k,q](1+\alpha[k,q]-\alpha\beta)+\beta(1-\alpha))}{1-\beta} d_k$$

$$= \sum_{k=2}^{\infty} t_k = 1 - t_1 < 1.$$

Conversely, suppose that $f \in \mathcal{N}_q^{\mu}(\alpha, \beta)$. Theny by (19), for k = 2, 3, ..., we have:

$$a_k \leqslant \frac{1-\beta}{\Psi_{k-1}([k,q](1+\alpha[k,q]-\alpha\beta)+\beta(1-\alpha))}.$$

By putting

$$t_k = \frac{\Psi_{k-1}([k,q](1+\alpha[k,q]-\alpha\beta)+\beta(1-\alpha))}{1-\beta}, \quad (k \geqslant 2),$$

we have $t_k \ge 0$ and if $t_1 = 1 - \sum_{k=2}^{\infty} t_k$, we get the required result. So the proof is complete.

Theorem 5. Let the function f(z) by (2) be in the class $\mathcal{N}_q^{\mu}(\alpha,\beta)$, then:

1. f(z) is starlike of order δ_1 for $0 \le \delta_1 < 1$ in $|z| < R_1$,

$$R_1 = \inf_{k} \left[\frac{B}{(k - \sigma_1)(1 - \beta)} \right]^{\frac{1}{k - 1}},$$
 (20)

where

$$B = (1 - \delta_1)\Psi_{k-1}([k, q](1 + \alpha[k, q] - \alpha\beta) + \beta(1 - \alpha)).$$

2. f(z) is convex of order δ_2 for $0 \le \delta_2 < 1$ in $|z| < R_2$, where:

$$R_2 = \inf_{k} \left[\frac{C}{k(k - 2\delta_2)(1 - \beta)} \right]^{\frac{1}{k - 1}}, \tag{21}$$

where

$$C = (1 - \delta_2)\Psi_{k-1}([k, q](1 + \alpha[k, q] - \alpha\beta) + \beta(1 - \alpha)).$$

3. f(z) is close-to-convex of order δ_3 for $0 \le \delta_3 < 1$ in $|z| < R_3$, where:

$$R_3 = \inf_{k} \left[\frac{D}{k(1-\beta)} \right]^{\frac{1}{k-1}},$$
 (22)

where

$$D = (1 - \delta_3)\Psi_{k-1}([k, q](1 + \alpha[k, q] - \alpha\beta) + \beta(1 - \alpha)).$$

Proof. To establish the required result, it is sufficient to prove that:

$$\left|\frac{zf'(z)}{f(z)} - 1\right| \leqslant 1 - \delta_1, \qquad (|z| \leqslant R_1).$$

But

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| = \left| \frac{z - \sum_{k=2}^{\infty} k a_k z^k}{z - \sum_{k=2}^{\infty} a_k z^k} - 1 \right|$$

$$= \left| \frac{-\sum_{k=2}^{\infty} (k-1) a_k z^k}{z - \sum_{k=2}^{\infty} a_k z^k} \right| \leqslant \frac{\sum_{k=2}^{\infty} (k-1) a_k |z|^{k-1}}{1 - \sum_{k=2}^{\infty} a_k |z|^{k-1}} \leqslant 1 - \delta_1.$$

Thus $\sum_{k=2}^{\infty} \left(\frac{k-\delta_1}{1-\delta_0}\right) a_k |z|^{k-1} \leqslant 1$.

Since $f(z) \in \mathcal{N}_q^{\mu}(\alpha, \beta)$, the last inequality holds, if:

$$|z|^{k-1} \leqslant \left[\frac{D}{(k-\delta_1)(1-\beta)}\right],$$

where

$$D = (1 - \delta_1)\Psi_{k-1}([k, q](1 + \alpha[k, q] - \alpha\beta) + \beta(1 - \alpha)).$$

In the last theorem, we investigate the weighted mean concept.

Theorem 6. If f and g belong to $\mathcal{N}_q^{\mu}(\alpha, \beta)$, then the weighted mean of f and g is also in the some class.

Proof. We have to prove that $h_t(z) = \left[\frac{(1-t)f(z)+(1+t)g(z)}{2}\right]$ is in the class $\mathcal{N}_q^{\mu}(\alpha,\beta)$.

Since $f(z) = z - \sum_{k=2}^{\infty} a_k z^k$ and $g(z) = \sum_{k=2}^{\infty} b_k z^k$, so:

$$h_t(z) = z - \sum_{k=2}^{\infty} \left\{ \frac{(1-t)a_k + (1+t)b_k}{2} \right\} z^k.$$

To prove $h_t(z) \in \mathcal{N}_q^{\mu}(\alpha, \beta)$, by (15) we need to show that:

$$\sum_{k=2}^{\infty} \frac{E}{2(1-\beta)} < 1,$$

where

$$E = \Psi_{k-1}([k,q](1+\alpha[k,q]-\alpha\beta) + \beta(1-\alpha))$$

$$\times [(1-t)a_k + (1-t)b_k].$$

For this, we have:

$$F = \sum_{k=2}^{\infty} \frac{E}{2(1-\beta)}$$

$$= \frac{(1-t)}{2} \sum_{k=2}^{\infty} \frac{\Psi_{k-1}[k,q](1+\alpha[k,q]-\alpha\beta) + \beta(1-\alpha)}{1-\beta} a_k$$

$$+ \frac{(1+t)}{2} \sum_{k=2}^{\infty} \frac{\Psi_{k-1}[k,q](1+\alpha[k,q]-\alpha\beta) + \beta(1-\alpha)}{1-\beta} b_k$$

and by (15), we have:

$$F < \frac{(1-t)}{2} + \frac{(1+t)}{2} = 1.$$

Hence the result follows.

References

- [1] A. Aral, V. Gupta, and R. P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, 2013.
- [2] M. Arif, M. U. Haq, and J.-L. Liu, A subfamily of univalent functions associated with-analogue of Noor integral operator, *J. of Function Spaces*, **2018** (2018), Art. # 3818915, 5 pp.
- [3] H. Exton, q-Hypergeometric Functions and Applications, Horwood, 1983.
- [4] G. Gasper, M. Rahman, and G. George, *Basic Hypergeometric Series*, Volume 96, Cambridge University Press, 2004.
- [5] K. I. Noor, On new classes of integral operators. J. Natur. Geom., 16, No 1-2 (1999), 71–80.
- [6] K. I. Noor and M. A. Noor, On integral operators, J. of Math. Anal. and Appl., 238, No 2 (1999), 341–352.