TOPOLOGICAL CHARACTERIZATION FOR
THE LINE GRAPH OF NANOSTRUCTURES
Jianzhong Xu1, Muhammad K. Siddiqui2,
Muhammad Imran3,4 1 Department of Electronics and Information Engineering
Bozhou University, Bozhou 236800, CHINA 2 Department of Mathematics
COMSATS University Islamabad
Lahore Campus, 54000 - PAKISTAN 3 Department of Mathematical Sciences
United Arab Emirates University, P.O. Box 15551
Al Ain, UNITED ARAB EMIRATES 4 Department of Mathematics
School of Natural Sciences (SNS)
National University of Sciences and Technology (NUST)
Sector H-12, Islamabad, PAKISTAN
A numerical quantity that characterizes the whole structure of a
graph is called a topological index. More preciously topological
indices are numbers associated with molecular graphs for the
purpose of allowing quantitative structure-activity/ property/
toxicity relationships. These topological indices correlate
certain physico-chemical properties like boiling point, stability,
strain energy etc of chemical compounds. The concepts of hyper
Zagreb index, first multiple Zagreb index, second multiple Zagreb
index and Zagreb polynomials were established in chemical graph
theory based on vertex degrees. These indices are useful in the
study of anti-inflammatory activities of certain chemical
networks. In this paper, we determine the hyper Zagreb index, first
multiple Zagreb index, second multiple Zagreb index and Zagreb
polynomials of the line graph of lattice, nanotube and
nanotorus of by using the concept of subdivision.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] M. Bača, J. Horváthová, M. Mokrišová, A. Suhányiová, On topological
indices of fullerenes, Appl. Math. Comput., 251 (2015), 154-161.
[2] M. Bača, J. Horváthová, M. Mokrišová, A. Semanicová-Fenovcı́ková, A.
Suhányiová, On topological indices of carbon nanotube network, Canad.
J. Chem., 93 (2015), 1-4.
[3] K.C. Das, On geometricarithmetic index of graphs, MATCH Commun.
Math. Comput. Chem., 64 (2010), 619-630.
[4] M. Eliasi, A. Iranmanesh, I. Gutman, Multiplicative version of first zagreb
index, MATCH Commun. Math. Comput. Chem., 68 (2012), 217-230.
[5] B. Furtula, I. Gutman, M. Dehmer, On structure-sensitivity of degreebased topological indices, Appl. Math. Comput., 219 (2013), 8973-8978.
[6] M.R. Farahani, The hyper zegreb index of T U SC 4C8 (S) nanotubes, Int.
J. Engin. Tech. Rese, 3, No 1 (2015), 1-6.
[7] W. Gao, M.K. Siddiqui, M. Imran, M.K. Jamil, M.R. Farahani, Forgotten
topological index of chemical structure in drugs, Saudi Pharmaceutical J.,
24 (2016), 258-267.
[8] W. Gao, M.K. Siddiqui, Molecular descriptors of nanotube, Oxide, Silicate,
and triangulene networks, J. of Chemistry, 2017, Article ID 6540754, 1-10.
[9] W. Gharibi, A. Ahmad, M.K. Siddiqui, On Zagreb indices, Zagreb polynomials of nanocone and nNanotubes, J. Comput. Theor. Nanosci., 13
(2016), 5086-5092.
[10] M. Ghorbani, N. Azimi, Note on multiple Zagreb indices, Iran. J. Math.
Chem., 3, No 2 (2012), 137-143.
[11] M. Ghorbani, Optoelectronics and Advanced Materials-Rapid Communications, 4 (2010), 261-268.
[12] I. Gutman, K.C. Das, Some properties of the second Zagreb index, MATCH
Commun. Math. Comput. Chem., 50 (2004), 103-112.
[13] I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry,
Springer-Verlag, New York, 1986.
[14] I. Gutman, N. Trinajstic, Graph theory and molecular orbitals. Total felectron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972),
535-538.
[15] S. Hayat, M. Imran, Computation of topological indices of certain networks, Appl. Math. Comput., 240 (2014), 213-228.
[16] S. Hayat, M. Imran, Computation of certain topological indices of nanotubes covered by C5 and C7, J. Comput. Theor. Nanosci., 12 (2015),
1-9.
[17] M. Imran, S. Hayat, M.Y.H. Mailk, On topological indices of certain interconnection networks, Appl. Math. Comput., 244 (2014), 936-951.
[18] A. Mahmiani, A. Iranmanesh, EdgeSzeged Index of HAC5C7[r, p] nanotube, MATCH Commun. Math. Comput. Chem., 62 (2009), 397-417.
[19] M.F. Nadeem, S. Zafar, Z. Zahid, Certain topological indicies of the line
graph of subdivsion graphs, Appl. Math. Comput., 271 (2015), 790-794.
[20] M.F. Nadeem, S. Zafar, Z. Zahid, Certain topological indicies of the line
graph of subdivsion graphs, Appl. Math. Comput., 273 (2016), 125-130.
[21] J. Rada, R. Cruz, I. Gutman, Benzenoid systems with extremal vertexdegree-based topological indices, MATCH Commun. Math. Comput.
Chem., 72 (2014), 125-136.
[22] J. Rada, R. Cruz, Vertex-degree-based topological indices over graphs,
MATCH Commun. Math. Comput. Chem., 72 (2014), 603-616.
[23] P.S. Ranjini, V. Lokesha, I.N. Cangl, On the Zagreb indices of the line
graphs of the subdivision graphs, Appl. Math. Comput., 218 (2011), 699702.
[24] P.S. Ranjini, V. Lokesha, M.A. Rajan, On the Shultz index of the subdivision graphs, Adv. Stud. Contemp. Math., 21, No 3 (2011), 279-290.
[25] M.K. Siddiqui, M. Imran, A. Ali, On Zagreb indices, Zagreb polynomials
of some nanostar dendrimers, Appl. Math. Comput., 280 (2016), 132-139.
[26] M.K. Siddiqui, W. Gharibi, On Zagreb indices, Zagreb polynomials of mesh
derived networks, J. Comput. Theor. Nanosci., 13 (2016), 8683-8688.
[27] M.K. Siddiqui, M. Naeem, N. A. Rahman, M. Imran, Computing topological indices of certain networks, J. Optoelectronics and Advanced Materials,
18, No 9-10 (2016), 884-892.
[28] G.H. Shirdel, H. RezaPour and A.M. Sayadi, The hyper Zagreb index of
graph operations, Iran. J. Math. Chem., 4, No 2 (2013), 213-220.
[29] G. Su, L. Xu, Topological indices of the line graph of subdivision graphs
and their Schur-bounds, Appl. Math. Comput., 253 (2015), 395-401.
[30] H. Wiener, Structural determination of paraffin boiling points, J. Am.
Chem. Soc., 69 (1947), 17-20.