TOPOLOGICAL CHARACTERIZATION FOR
THE LINE GRAPH OF NANOSTRUCTURES

Abstract

A numerical quantity that characterizes the whole structure of a graph is called a topological index. More preciously topological indices are numbers associated with molecular graphs for the purpose of allowing quantitative structure-activity/ property/ toxicity relationships. These topological indices correlate certain physico-chemical properties like boiling point, stability, strain energy etc of chemical compounds. The concepts of hyper Zagreb index, first multiple Zagreb index, second multiple Zagreb index and Zagreb polynomials were established in chemical graph theory based on vertex degrees. These indices are useful in the study of anti-inflammatory activities of certain chemical networks. In this paper, we determine the hyper Zagreb index, first multiple Zagreb index, second multiple Zagreb index and Zagreb polynomials of the line graph of $2D-$lattice, nanotube and nanotorus of $TUC_4C_8[p,q]$ by using the concept of subdivision.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 32
Issue: 6
Year: 2019

DOI: 10.12732/ijam.v32i6.11

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] M. Bača, J. Horváthová, M. Mokrišová, A. Suhányiová, On topological indices of fullerenes, Appl. Math. Comput., 251 (2015), 154-161.
  2. [2] M. Bača, J. Horváthová, M. Mokrišová, A. Semanicová-Fenovcı́ková, A. Suhányiová, On topological indices of carbon nanotube network, Canad. J. Chem., 93 (2015), 1-4.
  3. [3] K.C. Das, On geometricarithmetic index of graphs, MATCH Commun. Math. Comput. Chem., 64 (2010), 619-630.
  4. [4] M. Eliasi, A. Iranmanesh, I. Gutman, Multiplicative version of first zagreb index, MATCH Commun. Math. Comput. Chem., 68 (2012), 217-230.
  5. [5] B. Furtula, I. Gutman, M. Dehmer, On structure-sensitivity of degreebased topological indices, Appl. Math. Comput., 219 (2013), 8973-8978.
  6. [6] M.R. Farahani, The hyper zegreb index of T U SC 4C8 (S) nanotubes, Int. J. Engin. Tech. Rese, 3, No 1 (2015), 1-6.
  7. [7] W. Gao, M.K. Siddiqui, M. Imran, M.K. Jamil, M.R. Farahani, Forgotten topological index of chemical structure in drugs, Saudi Pharmaceutical J., 24 (2016), 258-267.
  8. [8] W. Gao, M.K. Siddiqui, Molecular descriptors of nanotube, Oxide, Silicate, and triangulene networks, J. of Chemistry, 2017, Article ID 6540754, 1-10.
  9. [9] W. Gharibi, A. Ahmad, M.K. Siddiqui, On Zagreb indices, Zagreb polynomials of nanocone and nNanotubes, J. Comput. Theor. Nanosci., 13 (2016), 5086-5092.
  10. [10] M. Ghorbani, N. Azimi, Note on multiple Zagreb indices, Iran. J. Math. Chem., 3, No 2 (2012), 137-143.
  11. [11] M. Ghorbani, Optoelectronics and Advanced Materials-Rapid Communications, 4 (2010), 261-268.
  12. [12] I. Gutman, K.C. Das, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem., 50 (2004), 103-112.
  13. [13] I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, New York, 1986.
  14. [14] I. Gutman, N. Trinajstic, Graph theory and molecular orbitals. Total felectron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535-538.
  15. [15] S. Hayat, M. Imran, Computation of topological indices of certain networks, Appl. Math. Comput., 240 (2014), 213-228.
  16. [16] S. Hayat, M. Imran, Computation of certain topological indices of nanotubes covered by C5 and C7, J. Comput. Theor. Nanosci., 12 (2015), 1-9.
  17. [17] M. Imran, S. Hayat, M.Y.H. Mailk, On topological indices of certain interconnection networks, Appl. Math. Comput., 244 (2014), 936-951.
  18. [18] A. Mahmiani, A. Iranmanesh, EdgeSzeged Index of HAC5C7[r, p] nanotube, MATCH Commun. Math. Comput. Chem., 62 (2009), 397-417.
  19. [19] M.F. Nadeem, S. Zafar, Z. Zahid, Certain topological indicies of the line graph of subdivsion graphs, Appl. Math. Comput., 271 (2015), 790-794.
  20. [20] M.F. Nadeem, S. Zafar, Z. Zahid, Certain topological indicies of the line graph of subdivsion graphs, Appl. Math. Comput., 273 (2016), 125-130.
  21. [21] J. Rada, R. Cruz, I. Gutman, Benzenoid systems with extremal vertexdegree-based topological indices, MATCH Commun. Math. Comput. Chem., 72 (2014), 125-136.
  22. [22] J. Rada, R. Cruz, Vertex-degree-based topological indices over graphs, MATCH Commun. Math. Comput. Chem., 72 (2014), 603-616.
  23. [23] P.S. Ranjini, V. Lokesha, I.N. Cangl, On the Zagreb indices of the line graphs of the subdivision graphs, Appl. Math. Comput., 218 (2011), 699702.
  24. [24] P.S. Ranjini, V. Lokesha, M.A. Rajan, On the Shultz index of the subdivision graphs, Adv. Stud. Contemp. Math., 21, No 3 (2011), 279-290.
  25. [25] M.K. Siddiqui, M. Imran, A. Ali, On Zagreb indices, Zagreb polynomials of some nanostar dendrimers, Appl. Math. Comput., 280 (2016), 132-139.
  26. [26] M.K. Siddiqui, W. Gharibi, On Zagreb indices, Zagreb polynomials of mesh derived networks, J. Comput. Theor. Nanosci., 13 (2016), 8683-8688.
  27. [27] M.K. Siddiqui, M. Naeem, N. A. Rahman, M. Imran, Computing topological indices of certain networks, J. Optoelectronics and Advanced Materials, 18, No 9-10 (2016), 884-892.
  28. [28] G.H. Shirdel, H. RezaPour and A.M. Sayadi, The hyper Zagreb index of graph operations, Iran. J. Math. Chem., 4, No 2 (2013), 213-220.
  29. [29] G. Su, L. Xu, Topological indices of the line graph of subdivision graphs and their Schur-bounds, Appl. Math. Comput., 253 (2015), 395-401.
  30. [30] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1947), 17-20.