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Abstract: Graph embedding is the mapping of a topological structure (guest
graph) into another topological structure (host graph) that preserves certain
required topological properties and the graph embedding ability reflects how
efficiently a parallel algorithm with a guest graph can be executed on a host
graph [1] and the utilization of system resources in the host graph [2]. In this
paper, we obtain exact wirelength of embedding complete multipartite graphs
into cycle-of-ladders.
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1. Introduction

Recent advances in integrated circuit technology make it possible to construct
very large interconnection networks. Together with these advances, many in-
terconnection network topologies have been proposed and investigated in the
literature. Interconnection networks are often modeled as graphs. Graph em-
bedding is an important factor to evaluate an interconnection network. Em-
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bedding as mathematical models of parallel computing have been discussed
extensively in the literature. In this model, both the algorithm to be imple-
mented and the interconnection network of the parallel computing system are
represented by graph [3], the implementation details are then studied through
the embedding.

Let G(V,E) and H(V,E) be finite grahs with n vertices. An embedding f
of G into H is defined [4] as follows:

1. f is a bijective map from V (G) → V (H),

2. f is a one-to-one map from E(G) to {Pf (u, v) : Pf (u, v) is a path in H
between f(u) and f(v) for (u, v) ∈ E(G)}.

The edge congestion of an embedding f of G intoH is the maximum number
of edges of the graph G that are embedded on any single edge of H. Let
ECf (G,H(e)) denote the number of edges (u, v) of G such that e is in the path
Pf (u, v) between f(u) and f(v) in H. In other words,

ECf (G,H(e)) = |{(u, v) ∈ E(G) : e ∈ Pf (u, v)}| ,

where Pf (u, v) denotes the path between f(u) and f(v) in H with respect to
f . If we think of G as representing the wiring diagram of an electronic circuit,
with the vertices representing components and the edges representing wires
connecting them, then the edge congestion EC(G,H) is the minimum, over all
embeddings f : V (G) → V (H), of the maximum number of wires that cross
any edge of H, [5]. Other undefined notation and terminology are in [6, 7, 8, 9].

The Wirelength Problem. The wirelength of an embedding f of G into
H is given by

WLf(G,H) =
∑

(u,v)∈E(G)

dH(f(u), f(v)) =
∑

e∈E(H)

ECf (G,H(e)),

where dH(f(u), f(v)) denotes the length of the path Pf (u, v) in H. Then, the
wirelength of G into H is defined as

WL(G,H) = minWLf(G,H),

where the minimum is taken over all embeddings f of G into H. The wirelength
problem [10, 11, 12], of a graph G into H is to find an embedding of G into H
that induces the minimum wirelength WL(G,H).
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The wirelength of a graph embedding arises from VLSI designs, data struc-
tures and data representations, networks for parallel computer systems, bio-
logical models that deal with cloning and visual stimuli, parallel architecture,
structural engineering and so on[13]. Graph embeddings have been well studied
for meshes into crossed cubes [14], binary trees into hypercubes [15], complete
binary trees into hypercubes [16], incomplete hypercube in books [17], tori and
grids into twisted cubes [18], meshes into locally twisted cubes [19], general-
ized ladders into hypercubes [20], grids into grids [21], binary trees into grids
[22], hypercubes into cycles [23], star graph into path [24], meshes into M obius
cubes [25], ternary tree into hypercube [26], enhanced and augmented hyper-
cube into complete binary tree [27], circulant into arbitrary trees, cycles, certain
multicyclic graphs and ladders [28], hypercubes into cylinders, snakes and cater-
pillars [29], embedding of special classes of circulant networks, hypercubes and
generalized Petersen graphs [30].

In this paper, we present an algorithm for finding the embedding of Com-
plete multipartite graphs into cycle-of-ladders and prove its correctness using
the Modified Congestion lemma [32, 36] and Partition lemma [32].

2. Preliminaries setting

The following two versions of the edge isoperimetric problem of a graph G(V,E)
have been considered in the literature [31], and are NP -complete [27].

Problem 1 (Minimum Cut Problem): Find a subset of vertices of a given
graph, such that the edge cut separating this subset from its complement has
minimal size among all subsets of the same cardinality. Mathematically, for a
given m, if θG(m) = min

A⊆V , |A|=m
|θG(A)| where θG(A) = {(u, v) ∈ E : u ∈ A, v /∈

A}, then the problem is to find A ⊆ V such that |A| = m and θG(m) = |θG(A)|.

Problem 2 (Maximum Subgraph Problem): Find a subset of vertices of
a given graph, such that the number of edges in the subgraph induced by
this subset is maximal among all induced subgraphs with the same number of
vertices. Mathematically, for a given m, if IG(m) = max

A⊆V , |A|=m
|IG(A)| where

IG(A) = {(u, v) ∈ E : u, v ∈ A}, then the problem is to find A ⊆ V such that
|A| = m and IG(m) = |IG(A)|.

For a given m, where m = 1, 2, . . . , n, we consider the problem of finding a
subset A of vertices of G such that |A| = m and |θG(A)| = θG(m). Such subsets
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are called optimal. We say that optimal subsets are nested if there exists a total
order O on the set V such that for any m = 1, 2, . . . , n, the first m vertices in
this order is an optimal subset. In this case we call the order O an optimal

order [31]. This implies that WL(G,Pn) =
n
∑

m=0
θG(m).

Further, if a subset of vertices is optimal with respect to Problem 1, then its
complement is also an optimal set. But, it is not true for Problem 2 in general.
However for regular graphs a subset of vertices S is optimal with respect to
Problem 1 if and only if S is optimal for Problem 2.

Notation: For convenience we write ECf (e) instead of ECf (G, H(e) in
the sequel.

For any set S of edges of H, ECf (S) =
∑

e∈S ECf (e).

Lemma 1. (Modified Congestion Lemma) (See [32, 36].) Let f be an
embedding of an arbitrary graph G into H. Let S be an edge cut of H such
that the removal of edges of S leaves H into 2 components H1 and H2 and let
G1 = f−1(H1) and G2 = f−1(H2). Also S satisfies the following conditions:

(i) For every edge(a, b) ∈ Gi, i = 1, 2, Pf (a, b) has no edges in S.

(ii) For every edge (a, b) in G with a ∈ G1 and b ∈ G2, Pf (a, b) has exactly

one edge in S.

(iii) G1 and G2 are optimal sets.

Then ECf (S) is minimum and

ECf (S) = ECf (S) =
∑

v∈V (G1)

degG(v) − 2|E(G1)|

=
∑

v∈V (G2)

degG(v)− 2|E(G2)|.

Lemma 2. (Partition Lemma) (See [32].) Let f : G → H be an embed-
ding. Let {S1, S2, . . . , Sp} be a partition of E(H) such that each Si is an edge
cut of H. Then,

WLf (G,H) =

p
∑

i=1

ECf (Si).

Theorem 3. (See [35].) Let G be the complete 2p-partite graphs

K2n−p,2n−p,...,2n−p1 ≤ p < n.
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Let H be a subgraph of G with | V (H) |= 2n−1. Then,

| EG(H) |≤ 22n−p−3(2p − 1).

Further, equality holds if and only if H is isomorphic to a complete 2p-partite
graphs K2n−p,2n−p,...,2n−p .

Theorem 4. (See [35].) Let G be a complete t − partite graph Kr,r,...,r

with n = tr vertices t, r ≥ 2. Then the number of edges in a maximum subgraph
on l vertices of G is given by

ξl =















l(l − 1)/2 ; l ≤ t− 1,
p2t(t− 1)/2 ; l = t, 1 ≤ p ≤ r,
p2t(t− 1)/2 + jp(t− 1) + j(j − 1)/2 ;
l = (p− 1)t+ j, 1 ≤ j ≤ t− 1, 2 ≤ p ≤ r.

3. Exact wirelength of complete multipartite graphs into

cycle-of-ladders

A path of length s is denoted by P (s) and a cycle of length s is denoted by
C(s). A ladder of length s, denoted by an L(s), is a P (s) × K2. Each vertex
of an L(s) is labelled by (b0, b1), where b0 = 0 or b0 = 1, and 0 ≤ b1 ≤ s.
Each edge ((0, b1), (1, b1)) is called a rung of the ladder L(s), where 0 ≤ b1 ≤ s.
Specifically, it is called the bth1 rung. The 0th rung is called the bottom rung of
the ladder. The two paths ((0, 0), (0, 1), . . . , (0, s)) and ((1, 0), (1, 1), . . . , (1, s))
are called the bands of the L(s). Specifically, the former is called the 0th band
and the latter is called the 1st band. Clearly L(s) contains 2(s+1) verties and
3s+ 1 edges.

Definition 5. (See [33].) A cycle-of-ladders is a graph unified by a bone
cycle BC and k ladders LD(0), LD(1), . . . , LD(k − 1) with BR(0), BR(1), . . .,
BR(k− 1) as the bottom rungs, respectively, such that each BR(i) is contained
in the BC where 0 ≤ i ≤ k − 1.

In this section we assume that each ladder LD(i) 0 ≤ i ≤ k − 1, is of
length s. Clearly this type of cycle-of-ladders contains 2k(s + 1) verties and it
is denoted by COL(k, s).
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Embedding Algorithm

Input: Let G be the complete 2p-partite graphs K2n−p,2n−p,...,2n−p1 ≤ p < n
into cycle-of-ladders COL(k, s) where 2n−1 = 2k(s+ 1).

Algorithm: We define a labeling of complete multipartite graphs let V1, V2,
. . . , V2p be a partition of G and label the vertices of Vi, 1 ≤ i ≤ 2p as follows:
j.2p + i− 1 ∈ Vi | 1 ≤ i ≤ 2p, when j = 2, 4, ..., 2n−p and j.2p + i− 1 ∈ V2p−i+1 |
1 ≤ i ≤ 2p, when j = 1, 3, . . . , 2n−p. Label the vertices of COL(k, s) as follows:
Label the 0th band vertices of LD(0) from top to bottom as 1, 2, . . . , s. For
1 ≤ i ≤ k − 1, label the 1st band vertices of LD(i) from bottom to top as
(2i − 1)(s + 1), (2i − 1)(s + 1) + 1, . . . , (2i − 1)(s + 1) + s and the 0th band
vertices. Next from top to bottom as(2i− 1)(s+1)+ s+1, (2i− 1)(s+1)+ s+
2, . . . , (2i+1)(s+1)− 1. Label the 1st band vertices of LD(0) from bottom to
top as(2k − 1)(s + 1), (2k − 1)(s + 1) + 1, . . . , 2k(s + 1)− 1.

Output: An embedding f of complete 2p-partite graphs
K2n−p,2n−p,...,2n−p1 ≤ p < n into COL(k, s) given by f(x) = x with minimum
wirelength.

Proof: We assume that the labels represent the vertices to which they are
assigned.

For 1 ≤ i ≤ k
2 , let Ai be the set of edges which contains all the rungs of

LD(i − 1) and LD(k2 + i − 1). For 1 ≤ j ≤ k
2 , let Bj be the set of edges

which contains the edge between LD(i − 1) and LD(i) and the edge between
LD(k2 +i−1) and LD(k2 +i). For 1 ≤ i ≤ k, 1 ≤ j ≤ s, let Sj

i be the set of edges
in LD(i− 1) which contains the edges between (s− j +1)th rung and (s− j)th

rungs. Then {Ai : 1 ≤ i ≤ k
2} ∪ {Bj : 1 ≤ j ≤ k

2} ∪ {Sj
i : 1 ≤ i ≤ k, 1 ≤ j ≤ s}

is a partition of E(COL(k, s)).

For each i, 1 ≤ i ≤ k
2 , E(COL(k, s)) \Ai has two components Hi1 and Hi2,

where

V (Hi1)={(i− 1)(2s+ 2), (i− 1)(2s+ 2) + 1, ..., (i − 1)(2s+ 2) + (ks+ k − 1)}.

Let Gi1 = f−1(Hi1) and Gi2 = f−1(Hi2). By Theorem 4, Gi1, is an optimal set,
and each Ai satisfies conditions (i), (ii) and (iii) of the Modified Congestion
Lemma. Therefore ECf (Ai) is minimum.
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For each j, 1 ≤ j ≤ k
2 , E(COL(k, s)) \ Bj has two components Hj1 and

Hj2, where

V (Hj1) = {(2j − 1)(s + 1), (2j − 1)(s + 1) + 1, . . . ,

(2j − 1)(s + 1) + (ks + k − 1)}.

Let Gj1 = f−1(Hj1) and Gj2 = f−1(Hj2). By Theorem 4, Gj1, is an optimal
set, and each Bj satisfies conditions (i), (ii) and (iii) of the Modified Congestion
Lemma. Therefore ECf (Bj) is minimum.

For each i, j, 1 ≤ i ≤ k, 1 ≤ j ≤ s, E(COL(k, s))\Sj
i has two components

Hj
i1 and Hj

i2, where

V (Hj
i1)=















{1, ..., j − 1} ∪ {2k(s + 1),
2k(s + 1)− 2, ..., 2k(s + 1)− j} ; if i = 0,
{2i(s + 1)−1, 2i(s + 1)−2, ..., 2i(s + 1)−j} ∪ {2i(s + 1),
2i(s + 1) + 1, ..., 2i(s + 1) + j − 1} ; if i 6= 0.

Let Gj
i1 = f−1(Hj

i1) and Gj
i2 = f−1(Hj

i2). Since Gj
i1, is an optimal set, each

Sj
i satisfies conditions (i), (ii) and (iii) of the Congestion Lemma. Therefore

ECfS
j
i is minimum. The Partition Lemma implies that the wirelength is min-

imum.

Theorem 6. Let G be the complete 2p-partite graphs K2n−p,2n−p,...,2n−p1
≤ p < n into COL(k, s) where 2n−1 = 2k(s + 1). Then the exact wirelength of
G into H is given by

WL(G,COL(k, s)) = k.22n−p−2 + k.2n−p(2p − 1)
s(s + 1)

2
− 2k

s
∑

j=1

θG(2j).

Proof. By Modified Congestion Lemma,

i) ECf (Ai) = 22n−p−2(2p − 1), 1 ≤ i ≤ k
2 ,

ii) ECf (Bj) = 22n−p−2(2p − 1), 1 ≤ j ≤ k
2 ,

iii) ECf (S
j
i ) = 2n−p(2p − 1)2j − 2θG(2j), 1 ≤ i ≤ k and 1 ≤ j ≤ s.
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Then by Partition lemma, we have

WL(G,COL(k, s)) =

k
2

∑

i=1

ECf (Ai) +

k
2

∑

j=1

ECf (Bj) +
k

∑

i=1

s
∑

j=1

ECf (S
j
i )

=

k
2

∑

i=1

22n−p−2(2p − 1) +

k
2

∑

j=1

22n−p−2(2p − 1)

+

k
∑

i=1

s
∑

j=1

[2n−p(2p − 1)2j − 2θG(2j)]

=
k

2
22n−p−2(2p − 1) +

k

2
22n−p−2(2p − 1)

+ k

s
∑

j=1

[2n−p(2p − 1)j − 2θG(2j)]

= k.22n−p−2+2k
s

∑

j=1

[2n−p(2p−1)j − 2θG(2j)]

= k.22n−p−2+2k

s
∑

j=1

[2n−p(2p−1)j −

s
∑

j=1

θG(2j)]

= k.22n−p−2+2k[2n−p(2p−1)
s(s+1)

2
−

s
∑

j=1

θG(2j)

= k.22n−p−2+k[2n−p(2p−1)s(s+1)− 2k
s

∑

j=1

θG(2j).

Hence the proof is finished.

4. Conclusion

In this paper, we embedded complete multipartite graphs into cycle-of-ladders
to yield the minimum wirelength. Also the embedding constructed is simple
and elegant, and produces exact wirelength.
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