Zheng-Qing Chu1, Muhammad Kamran Jamil2
Aisha Javed3 1Department of General Education
Anhui Xinhua University, Hefei 230088, CHINA 2Department of Mathematics
Riphah Institute of Computing and Applied Sciences
Riphah International University, Lahore, PAKISTAN 3Abdus Salam School of Mathematical Sciences
Government College University, Lahore, PAKISTAN
For a graph , the first hyper Zagreb index is
defined as
, where is the
degree of the vertex . The hyper Zagreb index is a kind of
extensions of Zagreb index. In this paper, the monotonicity of the
hyper Zagreb index under some graph transformations was studied.
Using these mathematical properties, the extremal graph among
tricyclic graphs are determined for hyper Zagreb index. Moreover,
the sharp upper and lower bounds on the hyper Zagreb index of
tricyclic graphs are provided.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] B. Bollobàs, P. Erdös, Graphs of extremal weights, Ars Combin., 50 (1998), 225-233.
[2] J. Devillers, A.T. Balaban (Eds.), Topologicial Indices and Related De-
scriptors in QSAR and QSPR, Gordon and Breach, Amsterdam (1999).
[3] I. Gutman, K.C. Das, The first Zagreb index 30 years after, MATCH
Commun. Math. Comput. Chem., 50 (2004), 83-92.
[4] K.C. Das, I. Gutman, Some properties of of the second Zagreb index,
MATCH Commun. Math. Comput. Chem., 52 (2004), 103-112.
[5] Y. Gao, M. Imran, M.R. Farahani, H.M.A. Siddiqui, Some connectivity
indices and Zagreb index of honeycomb graphs, Int. J. Pharm. Sci. Res.,
9, No 5 (2018), 2080-2087.
[6] I. Gutman, M.K. Jamil, N. Akhter, Graphs with fixed number of pendent
vertices and first Zagreb index, Trans. on Combinatorics, 4 (2015), 43-48.
[7] W. Gao, M.K. Jamil, M.R. Farahani, The hyper Zagreb index and some
graph operations, J. Appl. Math. Comput., 54, No 1-2 (2017), 263-275.
[8] W. Gao, M.K. Jamil, A. Javed, M.R. Farahani, S. Wang, J.B. Liu,
Sharp bounds of the hyper-Zagreb index on acylic, unicyclic and bicyclic
graphs, Discrete Dynamics in Nature and Society, 2017 (2017), Article ID
6079450, 5 pp.; DOI: doi.org/10.1155/2017/6079450.
[9] I. Gutman, N. Tirnajstic̀, Graph theory and molecular orbitals. III. Total
pi-electron energy bydrocarbons, Chem. Phys. Lett., 17 (1972), 535-538.
[10] G.H. Shirdel, H. Rezapor, A.M. Sayadi, The hyper-Zagreb index of graph
operatiions, Iranian J. of Mathematical Chemistry, 4, No 2 (2013), 213-
220.
[11] M.R. Farahani, The hyper-Zagreb index of Benzenoid series, Frontiers of
Mathematics and Its Applications, 2, No 1 (2015), 1-5.
[12] W. Gao, M.R. Farahani, The hyper-Zagreb index for an infinite family of
nanostar dendrime, J. of Discrete Mathematical Sciences and Cryptogra-
phy, 20), No 2 (2017), 515-523.
[13] M.R. Farahani, W. Gao, M.R.R. Kanna, P.R. Kumar, J.B. Liu, General
Randic, sum-connectivity, hyper-Zagreb and harmonic indices, and har-
monic polynomial of molecular graphs, Advances in Physical Chemistry,
2016 (2016), Article ID 2315949, 6 pp., doi: 10.1155/2016/2315949.
[14] M. Rezaei, W. Gao, M.K. Siddiqui, M.R. Farahani, Computing hyper Za-
greb index and mpolynomials of titania nanotubes T io2 [m, n], Sigma J. of
Engineering and Natural Sci., 35, No 4 (2017), 707-714.
[15] S. Wang, W. Gao, M.K. Jamil, M.R. Farahani, J. Liu, Bounds of Zagreb
indices and hyper Zagreb indices, Mathematical Reports, 21, No 71 (2019),
93-102.