ON HYPER ZAGREB INDEX OF CERTAIN
GENERALIZED GRAPH STRUCTURES

Abstract

Let $G=(V,E)$ be a graph with $n$ vertices and $m$ edges. The hyper Zagreb index of $G$, denoted by $HM(G)$, is defined as

\begin{displaymath}HM(G) =\sum\limits_{uv \in E(G)}\left[d_{G}(u)+d_G(v)\right]^{2},\end{displaymath}

where $d_G(v)$ denotes the degree of a vertex $v$ in $G$. In this paper we compute the hyper Zagreb index of certain generalized graph structures such as generalized thorn graphs and generalized theta graphs. Also,for the first time, we determine exact values for hyper Zagreb index of some cycle related graphs, namely cycle with parallel $P_k$ chords, cycle with parallel $C_k$ chords and shell type graphs.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 32
Issue: 6
Year: 2019

DOI: 10.12732/ijam.v32i6.8

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] S. Akhter, M. Imran, Computing the forgotten topological index of four operations on graphs, AKCE Int. J. Graphs Comb., 14 (2017), 70-79.
  2. [2] S. Akhter, M. Imran, M.R. Farahani, Extremal unicyclic and bicyclic graphs with respect to the F-index, AKCE Int. J. Graphs Comb., 14 (2017), 80-91.
  3. [3] M. Azari, A. Iranmanesh, Chemical graphs constructed from rooted product and their Zagreb indices, MATCH Commun. Math. Comput. Chem., 70 (2013), 901-919.
  4. [4] M. Azari, A. Iranmanesh, I. Gutman, Zagreb indices of bridge and chain graphs, MATCH Commun. Math. Comput. Chem., 70 (2013), 921-938.
  5. [5] J. Carraher, M. Thomas Mahoney, G.J. Puleo, D.B. West, Sum paintability of generalized theta-graphs, Graphs and Combinatorics, 31, No 5 (2015), 1325-1334.
  6. [6] C.M. da Fonseca, D. Stevanovic, Further properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem., 72 (2014), 655-668.
  7. [7] K.C. Das, K. Xu, I. Gutman, On Zagreb and Harary indices, MATCH Commun. Math. Comput. Chem., 70 (2013), 301-314.
  8. [8] H. Deng, D. Sarala, S.K. Ayyaswamy, S. Balachandran, The Zagreb indices of four operations on graphs, Appl. Math. Comput., 275 (2016), 422-431.
  9. [9] W. Gao, M.K. Jamil, M.R. Farahani, The hyper-Zagreb index and some graph operations, J. Appl. Math. Comput., 54 (2017), 263-275.
  10. [10] I. Gutman, E. Milovanović, I. Milovanović, Beyond the Zagreb indices, AKCE Int. J. Graphs Comb., https://www.sciencedirect.com/science/article/pii/S0972860017302359.
  11. [11] I. Gutman, K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 50 (2004), 83-92.
  12. [12] I. Gutman, B. Ručič, N. Trinajstić, C.F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys., 62 (1975), 3399-3405.
  13. [13] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total πelectron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535-538.
  14. [14] A. Hamzeh, A. Reti, An analogue of Zagreb index inequality obtained from graph ir-regularity measures, MATCH Commun. Math. Comput. Chem., 72 (2014), 669-683.
  15. [15] A. Heydari, I. Gutman, On the terminal Wiener index of thorn graphs, Kragujevac J. Sci., 32 (2010), 57-64.
  16. [16] A. Joseph Gallian, A dynamic survey of graph labeling, Electr. J. of Combinatorics, 21 (2018).
  17. [17] K.M. Kathiresan, C. Parameswaran, Certain generalized thorn graphs and their Wiener indices, J. of Appl. Mathematics and Informatics, 30, No 5-6 (2012), 793-807.
  18. [18] M. Liu, B. Liu, Second Zagreb indices of unicyclic graphs with given degree sequences, Discrete Appl. Math., 167 (2014), 217-221.
  19. [19] M. Liu, F. Li, K.C. Das, Ordering the Zagreb coindices of connected graphs, MATCH Commun. Math. Comput. Chem., 70 (2013), 939-948.
  20. [20] A. Milićević, S. Nikolić, N. Trinajstić, On reformulated Zagreb indices, Mol. Divers., 8 (2004), 393-399.
  21. [21] S.K. Nilanjan De, A.P. Mohammed Abu Nayeem, F-index of some graph operations, Discrete Mathematics, Algorithms and Applications, 8, No 2 (2016), 1-17.
  22. [22] D. Sarala, H. Deng, C. Natarajan,S.K. Ayyaswamy, F index of graphs based on four new operations related to the strong product, AKCE Int. J. Graphs Comb., https://www.sciencedirect.com/science/ article/pii/S0972860018300264.
  23. [23] G. Sathiamoorthy, T.N. Janakiraman, Graceful labeling of generalized theta graphs, National Academy Science Letters, 41, No 2 (2018), available online.
  24. [24] G.H. Shirdel, H. Rezapour, A.M. Sayadi, The hyper Zagreb index of graph operations, Iranian J. of Math. Chemistry, 4, No 2 (2013), 213220.
  25. [25] S. Elumalai, T. Mansour, M. Ali Rostami, G.B.A. Xavier, A short note on hyper Zagreb index, Boletim da Soc. Paranaense de Matematica (BSPM), 37, No 2 (2019), 51-58.
  26. [26] Y.B. Venkatakrishnan, S. Balachandran, K. Kannan, On the eccentric connectivity index of generalized thorn graphs, National Academy Science Letters, 38, No 2 (2015), 165-168.
  27. [27] M. Veylaki, M.J. Nikmehr, H.A. Tavallaee, The third and hyper-Zagreb coindices of graph operations, J. Appl. Math. Comput., 50 (2016), 315325.
  28. [28] D. Vukičevič, A. Graovac, On modified Wiener indices of thorn graphs, MATCH Commun. Math. Comput. Chem., 50 (2004), 93-108.
  29. [29] K. Xu, The Zagreb indices of graphs with a given clique number, Appl. Math. Lett., 24 (2011), 1026-1030.
  30. [30] K. Xu, K.C. Das, S. Balachandran, Maximizing the Zagreb indices of (n, m)-graphs, MATCH Commun. Math. Comput. Chem., 72 (2014), 641654.
  31. [31] W. Yuan, X. Zhang, The second Zagreb indices of graphs with given degree sequences, Discrete Appl. Math., 185 (2015), 230-238.
  32. [32] B. Zhou, A. Graovac, D. Vukičevič, Variable Wiener indices of thorn graphs, MATCH Commun. Math. Comput. Chem., 56 (2006), 375-382.
  33. [33] B. Zhou, D. Vukičevič, On Wiener-type polynomials of thorn graphs, J. Chemometrics, 23 (2009), 600-604.