A STUDY OF EXTENDED BETA, GAUSS
AND CONFLUENT HYPERGEOMETRIC FUNCTIONS
Mohd Ghayasuddin1, Nabiullah Khan2, Musharraf Ali3 1Department of Mathematics
Integral University Campus
Shahjahanpur - 242001, INDIA 2 Department of Applied Mathematics
Aligarh Muslim University
Aligarh - 202002, INDIA 3 Department of Mathematics
G.F. College
Shahjahanpur - 242001, INDIA
In the present research note, we define a new extension of beta function by making use of the multi-index Mittag-Leffler function. Here, first we derive its fundamental properties and then we present a new type of beta distribution as an application of our proposed beta function. Moreover, we present a new extension of Gauss and confluent hypergeometric functions in terms of our newly introduced beta function. Some interesting properties of our extended hypergeometric functions (like integral representations, differential formulae, transformations and summation formulae and a generating relation) are also indicated in the last section.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] J. Choi, A.K. Rathie, R.K. Parmar, Extension of extended beta, hypergeometric and confluent hypergeometric functions, Honam Math. J., 36, No
2 (2014), 357-385.
[2] M.A. Chaudhry, A. Qadir, M. Rafique and S.M. Zubair, Extension of
Euler’s beta function, J. Comput. Appl. Math., 78, No 1 (1997), 19-32.
[3] M.A. Chaudhry, A. Qadir, H.M. Srivastava and R.B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., 159, No 2 (2004), 589-602.
[4] V. Kiryakova, The multi-index Mittag-Leffler functions as an important
class of special functions of fractional calculus, Comput. Math. with Appl.,
59, No 5 (2010), 1885-1895.
[5] V.S. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math., 118, No
1-2 (2000), 241-259.
[6] G.M. Mittag-Leffler, Sur la representation analytique d’une branche uniforme d’une function monogene, Acta Math., 29 (1905), 101-182.
[7] E. Özergin, M.A. Özarslan, A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math., 235 (2011), 4601-4610.
[8] J. Paneva-Konovska,
A survey on Bessel type functions as
multi-index Mittag-Leffler functions: Differential and integral relations,
Intern. J. Appl. Math., 32, No 3 (2019), 357-380; doi:
http://dx.doi.org/10.12732/ijam.v32i3.1.
[9] R.K. Parmar, A new generalization of Gamma, Beta, hypergeometric and
confluent hypergeometric functions, Le Matematiche, LXVIII (2013), 33-52.
[10] E.D. Rainville,Special Functions, Macmillan Co., New York (1960); Repr.
by Chelsea Publ. Co., Bronx, New York (1971).
[11] H.M. Srivastava and H.L. Manocha, A Treatise on Generating Functions,
Halsted Press (Ellis Horwood Ltd., Chichester), J. Wiley and Sons, N.
York-Chichester-Brisbane-Toronto (1984).
[12] M. Shadab, S. Jabee and J. Choi, An extension of beta function and its
application, Far East J. Math. Sci. 103, No 1 (2018), 235-251.