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Abstract: We study the composition of F.R. Cohen’s map P, — P», with
the Perron and Vannier representation, where P, is the pure braid group on
n strings. We prove that the obtained representation of P, has one of its
composition factors the inverse of the Gassner representation of the pure braid

group.

AMS Subject Classification: 20F36
Key Words: Artin representation; braid group; pure braid group; Gassner
representation

1. Introduction

The pure braid group, F,, is a normal subgroup of the braid group, B, on n
strings. One of the most important representations of P, is the Gassner rep-
resentation which comes from embedding P, — Aut(F,,), by means of Magnus
representation [6]. Here F,, is the free group with n generators. Another type
of representations, introduced by H. A. Haidar and M. N. Abdulrahim, is a
representation of the pure braid group on three strands Ps — GLg(C). This
representation turned out to be a direct sum of irreducible subrepresentations
(see [3]). We also have a representation introduced by F.R. Cohen, the map
B,, — By, which is defined on geometric braids by replacing each string with
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k strings. It was proven in [1] that by composing Cohen’s map B, +— Ba,
with the representation introduced by M. Wada [7], we obtain a representation
whose one of the composition factors is isomorphic to the Burau representa-
tion. A similar work was done on the pure braid group. In [2], it was proven
that composing Cohen’s map P, — Py with the Gassner representation gives
us a linear representation of P, whose composition factors are one copy of the
Gassner representation of P, and k — 1 copies of a diagonal representation,
hence a direct sum of one-dimensional representations.

There are several faithful representations of braids as automorphisms of
free groups. The most popular among them is the Artin representation B, —
Aut(F,), and similarly the extended Artin representation B, +— Aut(F,41).
We also have the Jones-Wenzl representation of the braid group (see [4]). An-
other one is the Perron and Vannier representation B,, — Aut(FF,,_1), and its
extensions in Aut(FF,,) and Aut(IF,,11), [5]. It was proven that the extended Per-
ron and Vannier representation in Aut(F,11) is not equivalent to the extended
Artin representation. On the other hand, the extended Perron and Vannier
representation in Aut(IF,,) is shown to be a Wada representation (see [5]).

We consider, in Section 3 of our work, Cohen’s map P, — P, and compose
it with the extended Perron and Vannier representation in Aut(IF,). We show
that the obtained linear representation has a composition factor isomorphic to
the inverse of Gassner representation (Theorem 1).

2. Preliminaries

The braid group on n strings, B,,, is the abstract group with generators o1, ..., oy,
and a presentation as follows:

0i0i+10; = 04100341, 1 =1,2,...,n—2,

00 = 004, ‘Z—j| > 2.

The pure braid group, P,, is defined as the kernel of the homomorphism B,, —
Sy, defined by o; — (i i+ 1), 1 <i <n— 1, where S, is the symmetric group
of n elements. It admits a presentation with generators:

Definition 1. The Gassner representation v, : P, — Aut(F,), where F,
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is the free group generated by < x1,...,x, >, is defined by

Ty = Ty, r<iorr>j,
it ={ s

Tj = TixiT;

Ty > (xixja:i_la:-_l)xr(a:ixjxi_la:j_l)*l,

j 1< r<j.

Lemma 1. The image of A;;, under the inverse of Gassner representation,
is given by

Ty > Tp, r<iorr>j,
14 xir—m:j_ Tixy,
T (Aig) = i xs e Y
! Iyt 1,.—1
e S e PN ;
zr = (2w wym)e (T oy ) T, 1 <r <

We now introduce the extension of the representation given by Perron and
Vannier [5]. For simplicity, we call the representation Perron-Vannier represen-
tation.

Definition 2. ([5]) The Perron-Vannier representation is defined as fol-
lows:

PepM) : B, — Aut(F,)

Y1 = Y1,
o1 = PepM (1) = ya = y1 e,

Yj — Yj, J>2,
and for i =2,3,...,n—1
Yi—1 = Yi—1Yi,

o; = Pcp(l)(ai) =9 Yir1 = Y Wi
vy, JAI-Litl

where F), =< y1,...,9yn >.
We now introduce the fox derivatives as follows.

Definition 3. Let [F,, be a free group of rank n with free basis z1, ..., 2.
We define for j = 1,2, ...,n the free derivatives on the group Z[F,| by

2\ Oz
(i) a; = dij,
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oy Ozt _
(ii) azéj = =612
(iii) %(uv) = g—ge(v) + ug—;, u,v € Z[Fy).

Note that e(v) =1 if v € F,,. Here §;; is the Kronecker symbol.

3. Cohen representation

Definition 4. The Cohen representation is the map B,, — B, defined as
follows:

o, —1Xo;

= (UkiakiJrl'-'UkiJrkfl)(Ukiflaki--'akiJrku) (Ukifk+10kifk+2---0ki)-

Here 1 x o; is the braid obtained by replacing each string of the geometric
braid, o;, with k& parallel strings. Cohen called 1 x o; a tensor product. For
simplicity, we replace 1 X o; by 7;.

Here, we take the special case k = 2. Our objective is to construct a linear
representation of P, of degree 2n in the following way: Consider the following
map: P, + Py, + GLy,(Z[tT']), where the first map is the restriction of
the Cohen representation to P, and the second one is the restriction of the
Perron-Vannier representation to Ps,. Next, we find a set of generators of the
group Fy,. We determine the action of the automorphism corresponding to
7; on this basis of Fa,. Then we find the image of A;; under the Cohen map
and determine the action on the basis of Fy,. After applying free differential
calculus to this element of Aut(Fa,), we get a linear representation of degree
2n. Given the generators of IF,,, namely z1, ..., x,, we choose a certain basis of
elements z;, each of which is a word in these x;’s. More precisely, we have, for
1<:<n

i = Y2i-1
and
Zn+i = Y2i—1-Y2i---Yon-
Here,
yi:xixi__:l, 1<i<2n-1
and

Yon = T2n-
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Proposition 1. For1 <i<n-—1and1 < j < 2n, the action of 7; on the
generators {z;} of Fy,, under the Perron-Vannier representation, is given by

(i) zi &= ziy1,

(ﬁ) Zit1 z;rllziziﬂ,

(iii) Zpyi = Zngitls

(iv) zntiy1 = Z;rllzn-l—izgiprlZi_JrllZn-i—i-I—l;

(v) zjr>z; forall j#i,i+1,n+in+i+1.

Proof. The action of o}s on the generators y;’s is given by Perron-Vannier
(see Definition 2).

(1) We have that T; = 02{02;4+102;—102;. SO
7i(2) = 02i02i4102i—102;(Y2i—1)
= 02i02i+102i71(92i71y2i)
= 02i02i+1(Y2i-1Y5; 1Y2i)
= 02i(Y2iY2i+1)
= Yoilar Y2it1
= Y2i+1
= Zi+1-

(i) 7i(zit1) = 02i02i4102i-102i (Y2i+1)
= U2i02i+102i—1(y§1y2i+1)
= U2Z‘U2i+1(y2_ily2i—1y2z‘+1)
= UQi(ygiilygilyQiflyZi+l)
= Yoih1Y2iYa; Y2i-1Y2iYa; Y2it1
= Z/Q_iirly%—ly%—f—l
= Z,;i_llziZiJrl.

(ili) 7i(2n+i) = 02i02i4102i-102i (Y2i—1Y2iY2i+1---Y2n)
= 0’2i02i+102i71(?JZiflyQiyZiyziilyZiJrl--'?JQn)
= 021’022'4-1(y2i—1y2_i£1y2iy2i+1y2i+2--'y2n)
= 02i(y2iy2i+1y2i+1ygiily2i+2~'-yzn)
= Y2ilYa; Y2it1--Yon
= Y2i+1---Yon
= Zn+i+1-

(i) Ti(Zntit1) = 02i02i4102i-102; (Y2i+1Y2i4+2---Y2n)
-1
= 02i0'2i+10'2i71(ygi y2z’+1~y2n)
—1
= (72i0'2i+1(ygi y2i71y2i+1y2i+2---y2n)
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= 022'(yZ_iirlyQ_ily2i—ly2i+192_iily2i+2'-'y2n)
= ygi}yly%y;ily2ifly2iy2i+2'-'y?.n

= y2_i3|_1y2i71y2iy2i+2my?,n

= Zz'_+11 zn-l'iz;iiJrlZi_Jrll Zntit1-

(v)ifl1 <j<nwithj#1ii+1,then2j—1<2i—3o0r2j—1>2i+3
and in both cases z; is fixed under the action of 7;.
ifn+1<j<2nwithj#n+in+i+1, then j=n+sforsomel <s<n
with s #£ 4,7+ 1, and we can see that 2s — 1 is not 2¢ — 1, 24, 2i + 1, 2¢ + 2 which
implies that z,4s — 2zn4+s under 7;.

O

We can see that for 1 <7 <n—1and 1 < j < 2n, the action of 7'271 on the
generators {z;} of Fa, is given by

(1) Zi > ZZ'ZZ'+1Z;17

ii) ziy1 = 2,

e —1
(i) zn+i 7> ZiZntit12,,4%i%n+is

(iv) 2ntit1 = Zntis

(V) zj—=>z; forall j#d,i+1,n+in+i+1.

Lemma 2. The image of A;; under Cohen’s map acts on the generators
{zs} as follows:

. —1

(i) zi = z; 22,

(i) zj — zj_lzl-_ 25232,

(iii) zp v+ 2z, ifr <i or r>j,

1 -1 -1 . . .
zjzi)zr (25 2 25%i) if i<r<y,
-1 -1 -
(V) 2n+i = 2, 1zn+izn+jzj1 Zn+j
(VD) Znj 7= 24 252052y i %
(Vii) Zpar &> Zpar if T <iorr>j,
—1_—1 ~1 —1
(Viil) zZngr = (25 27 25%i) Znr (2147 %n44) (204 220t 5)
—1 —1(,-1 -1 i ;
(zppi%iznti) ™ (24 j%i%n+5) if i<r<j.

(iv) z. — (zj_lzl_

Proof. We consider the image of the generators of the pure braid group
under Cohen’s map and still call it A;;,

Aij = Tj_lTj_g...Ti_HTiQTi:_ll...Tj__127'»_11, 1 < 7 < j <n.
That is, we need to consider A;; as right automorphisms acting on the genera-
tors of Fy, from the right.
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(i) Aij(2:)

(11) Aij(zj) = ijlTj72..

=Tj—1Tj—2.-

. . . 2 —1 -1 _—1 )
= Tj_1Tj—2...Tig1T; Ti+1...7'j727'j71(2’2)

— . . . 2, —1 -1 )
= Tj1Tj—2...Tig1T; TZ-+1...Tj_2(ZZ)

= ijlTj72...TZ’+1Ti2(ZZ')
= Tj_lTj_Q...TZ‘+1TZ'(ZZ‘+1)

—1
=Tj-1Tj—2---Ti+1 (ZH_lZiziJrl)

= 7j-1(2; 1 zi%j-1)

i ZiZg.

=Tj-1Tj—-2.-
=Tj-1Tj—-2--

=Tj-1Tj—-2.-

=Tj—1Tj—2..

o9 -1 -1 _ -1,
Tit1T; TZ-+1...Tj_2Tj_1(Z])

‘Ti+17—z‘27_i+1"'7—j—2(zj—1)

2
i1 (Zig1)
-1
.Ti+17—i(zi+1zizi+1)
-1 -1 -1
Tir1 (250121 Zit12i412;11%i%i41)
-1 -1
.Ti+2(zi+22’i ZZ‘+QZZ‘ZZ'+2)

- -1 _-1_. o
—TJ—l(quZi Zj-1%i%j-1)

_ —1_-1
_zj

Zi ZjziZg-

131

(iii) Suppose r < i or r > j. Then 74 fixes z, for all i < s < 7 — 1 and
therefore, A;; fixes z,.

(iv) Suppose i < r < j. Then,

= 2 —1 -1, _—-1_-1
Aij(zr) =Tj—1Tj=2---Tr41TrTr—1.-.Ti+1T; Ti+1"'7—r—17_7“ 7‘7,+1...

-1 -1 11

2 —
Tj—1Tj—2---Tr41TrTr—1.--Ti+1T; Ti—i—l"'TrflTT TTJrl...

-1 -1

. . . 2 —1
T AT 2o Tr A Tr Tr— 1o Tid AT Ty 1o Tp1 Ty (21)

2 -1 _
T AT 2o Tr A Tr Tr— 1w T 1T Ty 1o Ty 1 (Zr2r 4121

7—3112 Tj_fll ( Zr )

73212 (Z r )

Y

2 -1 -1
T 1T 2o Tr g A Tr Tr— 1o Tid 17§ Ty Ty (Zr 127412, _1)

2 -1
Tj—1Tj—2+-Tp41TrTyr—1.--Ti+1T; (ZZ'+1ZT+1ZZ-+1)

Tj—1Tj—2---Tr41TrTr—1--

-1 -1
Tir1Ti (251 ZiZik1 2112141 24

-7121‘+1)
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-1 -1 -1 —1
= Tj—lTj—2-'-Tr+17—7'7—7'—1m7—i+1(Zlquzi ZZ'+1ZZ'+1ZZ-+1ZZ'ZZ'+1ZT+1ZZ-+1

-1 -1 -1 _—
= Tj_lTj_Q...Tr+17'f,~7'f,~_1...Ti_i_g(ZiJFQZZ- Zi+22i2i+227~+12i+22,i

Zizi+2)

-1 -1 -1 -1
:Tj_lTj_Q...Tr+1Tf,~Tf,~_1(Z,,._1ZZ~ Br—1ZiZr—12r4+12,._1%;

1
2, %i%r—1)

= 7_j—17—j—2-'-7_r+17—7'(21; ] ] ; .
= Tj1Tj—2--Tra1(2, 412~ 2r412i%r4 12y 41 2rZri 12417

1
Zr+1zizr+1)

-1 -1
2, 21241241 ZiRil)

1.-1 1-1-1
2] ZpZiZrirq1 2 2 ZiZr)

- ) -1 -1 P Y
= Tj1Tj—2--Tra2(2, 402 2r422i%2; 2 poiZri2)

- ) -1 -1 ) -1.-1_
—7']_17']_2(2]-7222- 2j_9%i%%; zj72zzzj_2)

- 1 -1, ) -1.-1_
—Tj_l(zjflzi 2j_1%i%r%; zjflzzz]_l)

-l -1, . -1
=Z; % ZjziZry; %

-1
J

ZiZg-

(V) Aij (ZnJrZ') = ijlijQ---TiJrlTZ?Tz‘:_ll---7—;_127—;_11('3'n+i)

= Tj—1Tj—2

=Tj-1Tj—-2.-
=Tj-1Tj—-2.-
=Tj-1Tj—-2.-
=Tj-1Tj—-2.-
=Tj-1Tj—-2-.-

= Tj—l(zj__

R S R | A
Tib1T; Ti+1...7'j72(2n+z)

2 _—1
T 1T Ti-i—l(ZnJri)
2
Tit17f (Znti)
Ti1Ti(Znrit1)
. -1 1 -1 .
Tit1 (201 ZntiZn i1 Zig1 Pntitl)
—1 —1 —1
Tiv2(Zi 0% +iZntio%i2%n+it2)

=1 -1 .
1Zn+zzn+j_1zj_1zn+3—l)

-1 -1 -1
= Zj ZntiZniZ; Zn+j-

(vi) Aij(zntj) = 7j-17j-2..

=Tj—1Tj—2..

=Tj-1Tj—-2.-
=Tj-1Tj—-2.-
=Tj-1Tj—-2.-
=Tj-1Tj—-2.-

2 -1 -1 -1 ,
Tit1T; Ti+1...7'j727'j71(zn+])

. 2 -1 .
Tit1T; Ti+1...7'j72(2n+]_1)

Tir1 77 (Znti)

Ti1Ti(Zntit1)

Tit1 (Z;.;l_i+1zi+1zn+i+1 Z;iiziﬂ)
Ti42 (Z;izdrzZi+2zn+i+2z¢#izi+2)

1

zZ

-1
i+2
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N -1 ) ) -1 .
= TJfl(Znﬂelzjflznﬂflznﬂ'%fl)

-1 . L
Pnepj At Fn i<

(vii) Suppose r < i or r > j. Then 7 fixes 2,4, for all i < s < j — 1 and
therefore, A;; fixes z,4.
_ 2 1 _—1_—1_—1
(viil) Aij(2n+r) = Tj1Tjm2e Trf A Tr T 1o T AT Ty Tr 1 Ty Trpd
-1 -1
"‘Tj727—j71(2n+r)
o o2 1 _—1_-1_-1
=T 1Tj—2---Tr41TrTr—1---Ti+1T; T,L-Jrl...TrilTr TTJrl
1
--~Tj—2(2n+r)

— . . 2.—1 -1
=T 1Tj—2---Tr41TpTpr—1---Ti+1T; Ti—l—l“'TT—l

T?“_l(ZnJrT)

= Tj_lTj_Q...TT+1T7_TT_1...Ti+17'2-27'i:_1...
T;_ll(zrzn—l—r-i—lzgirzrzn—kr)

= Tj_lTj_Q...TT+1TTT7~_1...TZ‘+1TZ-27_Z-11...

1 1
T'r—2(zr—lZn+T+1Zn+7._1Zr_1Zn+7._1)

= Tj-1Tj—2---Tr41TpTr—1---Ti+1

7} (ZmZn+r+1zgi¢+1zz‘+1zn+¢+1)

= Tj-1Tj—2---Tr41TpTr—1---Ti+1

Ti(zi:rll ZiZiJrlZn+r+1z7;_il_i+1zi+lzn+i+1 Z;_il_iZiJrlZ;_,_ll
Fi%it1 Zi_—f—ll Znti Z'r:—ll—i—i—l Zz'_-l—ll Znti+1)
=Tj—1Tj—2-+-Tr41TrTr—1..-Ti+1 (zi_Jrll Zi_lzz‘+1
Zit1 Zﬁll ZiZit1%n4r+1 Z;iiJrlZiJrlZnJriJrlZ;ii
Zit1 Ziq_ll Zj Zi+12;_11 Zn4i Z;+Z‘+1Z;i_11 An+i+1 Z;_il_zq_l
Zit+1 Zn+z‘+1zﬁi+1zz+1 Zntitl Z;iizi—l—lzijrl z;
Zi+1z’;F11 Zn+izﬁi+1zz‘jr11 Zntit1)
=Tj-1Tj—2--Tr41TpTr—1---Ti42 (Z;’_12Zi712i+221
Zit2 Zn+7“+1z;_;l_i+2 Zit2 Zn+i+227:_|1_izi Zn+¢Z;ii+2
B2 It 2o i %] IntiZ iy 0%t antiee)

— -1 -1 -1

= Tj—lTj—2"'7—7‘+1TT(lzr Z; zrzilzrznwﬂzn”

ZrZndrZy 4 i ZiZnbiZn e Zrindr 2 i % AndiZn gy
-1

Zy Zntr)
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-1 -1 -1
=TT Try1(z Sr1F A A
-1
n+r—|—1Zr+lzn+7’+1zn+r+lz7’+1zn+7’+1zn+zzl'zn+2

—1
n+r+lzr+1zn+r+1zn+z i Andi n+r+lzr+lzn+r+1)

_ -1 -1 -1 -1
= Tj— 1( ] 1%; j— 1Zzzn+rzn+izizn+izn+j_1ijl
-1 1

“n+j— 1zn+z i An+iZ n+] 1%j—1%n+j— 1)

—1_-1 -1 -1
= Zj Zi Z]ZZZTL+TZ”+ZZZZH+Z n+]2’]2’n+] n+2 i Zn—+i
2Ly
n+j?j Fnti

Ol

To find the linear representation obtained by composing the Cohen map
P, — P, with the Perron-Vannier representation, we let ¥ be a homomorphism
from Fa,, to C* defined by W(zs) = ts for 1 < s < 2n. Let Dy = \I/— We now
determine the Jacobian matrix of the image of the generator A;; under Cohen’s
map,
Di(Aij(z1))  -.. Dan(4ij(21))
J(Aij) = : :
Di(Aij(221)) -- Dop(Aij(22n))
The construction used here is the Magnus representation of P,,. Let us prove
our main theorem.

Theorem 1. The linear representation obtained by composing the Cohen
map P, — P, with the the Perron-Vannier representation, namely P, >
GLgn(Z[tid,...,t;t;]), has a subrepresentation isomorphic to the inverse of
Gassner representation. That is, the image of A;; is

(’an(ts)(Az’j) | 0 > . where

Cp | H,
C,, is the n X n matrix given by
0;—1 0 0
T =2 =T

0 0 ... .. 0 —t; =t bt

mMit1 0 0 0 Ni+1

C, = 0 mi‘+2 0 ni'+2 0 |

mj_l 0 ... 0 0 TL] 1

0 0 0 n+7 +t;t n+2
0 0 0n—;
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and H,, is the n X n matrix given by

I+ 0 0
—T =1 —1 —2 —1
t; 0 0 00—t gty T it
piy1 1 0 0 qi+1
H,=| o | P2 0 . 12 0
Pj—1 0 . 0 1 qj—1
~1 ~1 ~1
—t 1t 0 . 0 —t ot
0 0 I

For i < r < j, the entries of the matrices C,, and H,, are given by

My = =t 7 bt — it
np = =t 6ttt — et

Pr = tartr (=1 + b + t; — tit),
G = tngrty (1 —ti =t + tit).

Proof. 1t is easy to see that the action of A;; on the elements of the basis
{#1, ..., zn} coincides with the inverse of the Gassner representation of degree n
(see Lemma 1 and (i),(ii),(iii), and (iv) in Lemma 2).

For C,,

Di(Aij)(2n+i) = 0.

Dj(Al'j)(ZnJri) = —t;l - t;Qthrth:}_j-

D;(Aij)(zn+5) = 0.

Dj(Aij)(2n1g) = toy; + tity yin

Di(Aij)(znte) = =t 7 + 17 bty — titngrt s, 0 <7 <.
Dj(Aij)(zntr) = =17 46 titnpty L — taget s, 1 <7 <
Dy(Aij)(2n4r) =0, 7<iorr>jand1<s<n.

Dy(Aij)(#n4r) =0, s#i,jandi<r <j.

For H,

nt (Aig) (i) = =15 ity 8 it 4
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Aij) (Znt5)

Aij)(Znt;)

A )( ):thrrt;ii(_l‘i‘ti'i‘tj—titj), 1< r<].
(Aig) (zngr) = toprty (1=t =t + tity), @ <r <j.
Aij)(zZngr)
Aij) (Znr)
Aij) (Zntr)

3
S

, r<iorr>j.
1<r<j.
in case s £ i,j,r #1,j, and s # 7. O

slvlvlvBvBelw)
3 3 3
11

Il
S = =
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