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1. Introduction

In this paper, we consider a Cauchy problem for a parabolic partial differen-
tial equation with one spatial dimension and unbounded coefficients, and use
finite-difference methods to approximate in space the corresponding generalised
solution. By concentrating on the special case of one dimension in space, we
can prove a convergence result sharper than the corresponding result in [10] for
the more general multidimensional case.

More precisely, let L be the nondivergent second-order partial differential
operator with real coefficients

Lu(t, x) = a(t, x)
∂2u

∂x2
+ b(t, x)

∂u

∂x
+ c(t, x)

in [0, T ]×R, with T ∈ (0,∞) a constant, and consider the initial value problem
∂u

∂t
= Lu+ f in [0, T ]× R, u(0, x) = g(x) on R. (1)

The real-valued functions f and g are allowed to have polynomial growth. As for
the linear operator, the coefficient functions a and b can also grow, quadratically
and linearly, respectively, and ∂u/∂t−L is supposed to be uniformly parabolic.

In our study, we use the variational approach adequately obtained for di-
mension one from the utilised in [10] for the approximation of the multidi-
mensional version of problem (1). However, as referred above, by considering
the special one-dimensional case we can prove a stronger convergence result. In
particular, the same order of accuracy is obtained under regularity assumptions
weaker than those required in [10].

Apart from the interest of this subject in PDE theory, linear parabolic PDE
problems arise in Biology, Physics and Mathematical Finance. We are mainly
motivated by the latter application, namely to a class of stochastic models
aimed to determine the arbitrage-free price of non path-dependent options of
European type (see, e.g., [15]).

It is well known that the study of option pricing model can be reduced,
with the use of a Feynman-Kač type formula, to solving Cauchy problems for
the second-order linear parabolic PDE.

In fact, let us consider a general version of the Black-Scholes stochastic
model for an option with fixed exercise, with the dynamics of underlying asset
price modelled by the SDE

dSt = St(µdt+ σdBt),

where S, µ and σ are, respectively, the price, the appreciation rate, and the
volatility of the underlying asset, Bt a standard Brownian motion, and both µ
and σ are taken time- and space-dependent.
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This is equivalent, by using a Feynman-Kač type formula, to solving the
Cauchy problem for the second-order linear parabolic PDE with unbounded
coefficients

∂V

∂t
+

1

2
σ2(t, S)S2 ∂

2V

∂S2
+ r(t)S

∂V

∂S
− r(t)V = 0 in [0, T ]× R

+ (2)

with terminal condition

V (T, S) = φ(S) on R
+ (3)

where V is the option value, r the risk-free interest rate, and φ the pay-off
function (see, e.g., [15]). Then, the option price can be approximated by us-
ing nonprobabilistic numerical techniques to approximate the solution of the
parabolic PDE problem (2)–(3).

Problem (1) clearly contains the (homogeneous) problem (2)–(3). Moreover,
as in (1) we let the initial data unspecified, the pay-off in (3) can be considered in
a large class of functions. We note that instead of the terminal-value formulation
arising in the financial model, we consider in problem (1) the more standard
initial-value formulation (one problem can be transformed in the other by a
simple change of the time variable).

As done in [10] for the multidimensional case, in this paper we tackle the
challenge posed to the spatial approximation by the unboundedness of the PDE
coefficients assuming that the PDE does not degenerate. Due to this assump-
tion, this work is not directly applicable to the financial problem which moti-
vates us, and should be viewed instead as a step in that direction. The rate
of convergence of the discretised problem’s generalised solution to the exact
problem’s generalised solution is estimated. In order to facilitate the approach
in space, we make use of basic one-step finite-difference schemes. For a study
concerning the time approximation, we refer to [9, 18] where the discretisation
of a general evolution equation problem of parabolic type can be found.

Note that if the procedure for obtaining implementable numerical schemes
for problem (1) includes, as a first step, the problem’s localisation to a bounded
domain (see, e.g., [1, 2, 17, 20, 19]), the unboundedness of the PDE coefficients
does not have to dealt with, as the PDE coefficients are bounded in the trun-
cated domain.

But, if instead the problem is (semi) discretised in the whole space, and then
the discretised problem is localised to a bounded domain, by imposing discrete
artificial boundary conditions (see, e.g., [4, 5, 6]), the coefficient unboundedness
remains a problem which must be tackled. As is [10], our study is meaningful
in this latter case.
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Note also that most studies concerning the approximation of PDE problems
in Finance consider the particular case where the PDE coefficients are constant
(see, e.g., [2, 20]). This occurs in Black-Scholes models (in one or several
dimensions), when the underlying asset appreciation rate and volatility are
taken constant: the simpler PDE with constant coefficients is obtained after a
standard change of variables (see, e.g., [15] for the one-dimensional case, and [8]
for the multidimensional case). When the drift and volatility are taken bounded
functions of time and space, the above change of variables leads to a PDE with
bounded coefficients (see, e.g., [1]). However, this procedure is not available
under the weak regularity assumptions we consider.

We stress that finite-difference methods are particularly suitable for PDE
problems related to Finance as most of them are Cauchy problems (therefore not
showing the complex domain geometries which are one main reason to favour
other numerical methods, e.g., finite-element methods). Also, although the the-
ory concerning the finite-difference approximation of PDEs could be considered
reasonably complete since some decades ago1, some important research is still
ongoing (see, e.g., the recent studies [12, 13, 14]).

We summarise the content of this paper. Section 2 merely presents the
particularisation of the framework utilised in [10] to the one dimensional case.
We state well-known facts on the solvability of problem (1), and introduce a
suitable class of weighted Sobolev spaces. Then, we discretise in space problem
(1), with the use of a finite-difference scheme. We introduce discrete versions of
the weighted Sobolev spaces, set a discrete framework, and state the existence
and uniqueness of the discretised problem’s generalised solution. In Section 3,
we prove that this discrete generalised solution approximates the exact gener-
alised solution, and determine the rate of convergence. In Section 4, we give an
example, and study its approximation under the framework used in the article.
Some final comments are made in Section 5.

2. The PDE problem and its discretisation

We begin by reviewing a classical result on the solvability of the PDE prob-
lem under study in a variational framework. The fact that the coefficients of
the linear operator are unbounded will be dealt with by using the so-called
well-weighted Sobolev spaces2. Both the framework and the solvability result

1 We refer to [21] for a brief summary of the method’s history. For the application of the
finite-difference method to option pricing, we refer to the review paper [3].

2 See [11] for a comprehensive description of these spaces.
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considered in [10] for the multidimensional case are now particularised for the
case of one dimension and presented for the reader’s convenience.

Let L be the second-order partial differential operator

L = a(t, x)
∂2

∂x2
+ b(t, x)

∂

∂x
+ c(t, x)

with real coefficients, defined in Q = [0, T ]× R, with T ∈ (0,∞), and consider
the PDE problem

ut = Lu+ f in Q, u(0, x) = g(x) on R. (4)

The functions f and g and the coefficients a and b are allowed to grow, and the
operator ∂u/∂t − L is uniformly parabolic, according to the assumptions that
will be stated later.

We introduce the well-weighted Sobolev spaces.

Let U ⊂ R be an open set, and r and ρ two positive smooth functions
defined in U . Take an integer m ≥ 0 and consider the weighted Sobolev space
Wm,2(U ; r, ρ), the Banach space of all locally integrable functions v : U → R

such that for each integer α, with 0 ≤ α ≤ m, the weak derivative Dαv exists,
and

‖v‖Wm,2(U ;r,ρ) :=





∑

α≤m

∫

U
r2|ραDαv|2dx





1/2

< ∞.

The above norm can be derived from the inner product

(v,w)Wm,2(U ;r,ρ) :=
∑

α≤m

∫

U
r2ρ2αDαvDαwdx.

Equipped with this inner product, Wm,2(U ; r, ρ) is a Hilbert space.

Notation. In the sequel, we omit the functions r and ρ from function space
notation without risk of ambiguity. Also, when U = R the set is dropped from
the notation. Finally, we will use the short notation ‖ · ‖m,2 for ‖ · ‖Wm,2(R;r,ρ).

Consider the following assumptions on the functions r and ρ (see [11]).

Assumption 1. Let m ≥ 0 be an integer, and r > 0, ρ > 0 smooth
functions on R. There exists a constant K such that

1. |Dαρ| ≤ Kρ1−α for all α satisfying α ≤ m− 1 if m ≥ 2;

2. |Dαr| ≤ K
r

ρα
for all α satisfying α ≤ m;
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3. sup
|x−y|<ε

(

r(x)

r(y)
+

ρ(x)

ρ(y)

)

= K for some ε > 0, x, y ∈ R.

Remark 1. Note that in (1) in Assumption 1 nothing is required if m < 2.

Remark 2. The set {(r, ρ)} satisfying (1) − (3) in Assumption 1 is not
empty34. An interesting example, which we will use in a later section, includes
the functions

r(x) = (1 + |x|2)β, β ∈ R, and ρ(x) = (1 + |x|2)γ , γ ≤
1

2
.

We recall that a function w : Q → R can be seen as a mapping from [0, T ]
into a functional space by defining (w(t))(x) := w(t, x). In the sequel we will
take this point of view.

Next, we introduce some coercivity and regularity assumptions (see [11]).

Assumption 2. Let r and ρ be positive smooth functions on R, and
m ≥ 0 an integer.

1. There exists a constant λ > 0 such that a(t, x) ≥ λρ2(x) for all t ≥ 0,
x ∈ R;

2. The coefficient functions a, b, and c of the operator L and their derivatives
in x up to the order m are measurable functions in [0, T ]×R. Moreover,
denoting by Dα

x the αth partial derivative operator with respect to x,
there exists a constant K such that

|Dα
xa| ≤ Kρ2−α ∀α ≤ m ∨ 1, |Dα

x b| ≤ Kρ1−α,

|Dα
x c| ≤ K ∀α ≤ m,

for all t ∈ [0, T ], x ∈ R;

3. f ∈ L2
(

[0, T ];Wm−1,2
)

and g ∈ Wm,2.

Notation. For m = 0 we use the notation W−1,2 :=
(

W 1,2
)∗
, where

(

W 1,2
)∗

is the dual of W 1,2.

3 See [11], citing O. G. Purtukhia, for a list of examples.
4 The weight function considered in [1] for the variational formulation of the Black-Scholes

equation clearly does not satisfy (1)− (2) of Assumption 1. We will discuss the suitability of
this function in a future approach of the degenerate case of PDE problem.
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Then, we define the generalised solution of problem (4) (see [11]).

Definition 1. We say that u ∈ C
(

[0, T ];W 0,2
)

∩ L2
(

[0, T ];W 1,2
)

is a
generalised solution of problem (4) if, for every t ∈ [0, T ] and all ϕ ∈ C∞

0 ,

(u(t), ϕ) = (g, ϕ) +

∫ t

0

{

− (a(s)Dxu(s),Dxϕ)

+ (b(s)Dxu(s)−Dxa(s)Dxu(s), ϕ)

+ (c(s)u(s), ϕ) + 〈f(s), ϕ〉
}

ds.

Notation. The symbol ( , ) in the above definition denotes the inner
product in W 0,2.

Finally, we state a well-known result concerning the existence and unique-
ness of the solution of problem (4), and also its stability.

Theorem 2. Let m ≥ 0 be an integer. Suppose that (1)−(2) in Assump-
tion 1, with m replaced by m + 1, and (1)−(3) in Assumption 2 hold. Then
problem (4) admits a unique generalised solution u on [0, T ]. Moreover

u ∈ C
(

[0, T ];Wm,2
)

∩ L2
(

[0, T ];Wm+1,2
)

and the following estimate holds

sup
0≤t≤T

‖u(t)‖2m,2 +

∫ T

0
‖u(t)‖2m+1,2dt

≤ N

(

‖g‖2m,2 +

∫ T

0
‖f(t)‖2m−1,2dt

)

,

with N ∈ R a constant.

The above statement can be obtained from a general result for evolution
equations by using the suitable Gelfand triple of spaces (see, e.g., [11]).

Next, we discretise problem (4) in space. We set a suitable discrete frame-
work by using a finite-difference scheme, and state an existence and uniqueness
result for the discretised problem’s generalised solution. The discrete setting
parallels the corresponding one for the multidimensional case in [10], with the
obvious modifications. We present it for sake of completeness, and also since
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the framework expressions become less heavy for the particular one dimensional
problem we are studying.

Let

Zh = {x ∈ R : x = nh, n = 0,±1,±2, . . .} , (5)

with h ∈ (0, 1], be the h-grid on R.

For every x ∈ Zh, consider the forward and backward difference quotients
in space given, respectively, by

∂+u = ∂+u(t, x) = h−1(u(t, x + h)− u(t, x)) (6)

and

∂−u = ∂−u(t, x) = h−1(u(t, x)− u(t, x− h)), (7)

Consider the discrete problem

ut = Lhu+ fh in Q(h), u(0, x) = gh(x) on Zh, (8)

where Lh is the discrete operator

Lh(t, x) = a(t, x)∂−∂+ + b(t, x)∂+ + c(t, x),

Q(h) = [0, T ]× Zh, with T ∈ (0,∞), and fh : Q(h) → R and gh : Zh → R.

We introduce the Banach spaces spaces l0,2(r) and l1,2(r, ρ), which are the
discrete versions of the weighted Sobolev spaces of order 0 and 1, respectively.

Consider functions v : Zh → R and the norm

‖v‖l0,2(r) =





∑

x∈Zh

r2(x) |v(x)|2 h





1/2

,

The space l0,2(r) is defined as

l0,2(r) :=
{

v : ‖v‖l0,2(r) < ∞
}

.

We observe that the above norm is induced by the inner product

(v,w)l0,2(r) =
∑

x∈Zh

r2(x)v(x)w(x)h,

where v,w ∈ l0,2(r). Endowed with the inner product, the space l0,2 is clearly
a Hilbert space.

For functions w : Zh → R, we introduce also the Banach space l1,2(r, ρ),

l1,2(r, ρ) =
{

w : ‖w‖l1,2(r,ρ) < ∞
}

,

where

‖w‖2l1,2(r,ρ) = ‖w‖2l0,2(r) +
∥

∥ρ∂+w
∥

∥

2

l0,2(r)
.
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Notation. In the sequel, we omit the functions r and ρ from the notation
for l0,2(r) and l1,2(r, ρ). Also, we will use the short notation ||| · |||0,2 and ||| · |||1,2
for ‖ · ‖l0,2(r) and ‖ · ‖l1,2(r,ρ), respectively.

As for the solvability study of the PDE problem (4), we will consider the
functions z : Q(h) → R as functions from [0, T ] into certain functional spaces
defined by (z(t))(x) := z(t, x) for all t ∈ [0, T ], x ∈ Zh. For these functions
z(t), we consider the space C

(

[0, T ]; l0,2
)

of continuous l0,2-valued functions on
[0, T ] and the spaces

L2
(

[0, T ]; lm,2
)

=

{

z : [0, T ] → lm,2 :

∫ T

0
|||z(t)|||2m,2dt < ∞

}

,

with m = 0, 1.
The data fh and gh in (8) will be assumed to satisfy certain conditions (see

[10]).

Assumption 3. Let r > 0 be a smooth function on R. We assume that

1. fh ∈ L2
(

[0, T ]; l0,2
)

;

2. gh ∈ l0,2.

Remark 3. We observe that |∂+a| ≤ Kρ can be easily derived from (2)
in Assumption 2 by using the mean value theorem.

We introduce the notion of generalised solution of problem (8) (see [10]).

Definition 3. We say that u ∈ C
(

[0, T ]; l0,2
)

∩ L2
(

[0, T ]; l1,2
)

is a gener-
alised solution of (8) if, for every t ∈ [0, T ] and for all ϕ ∈ l1,2,

(u(t), ϕ) = (gh, ϕ) +

∫ t

0

{

−
(

a(s)∂+u(s), ∂+ϕ
)

+
(

b(s)∂+u(s)− ∂+a(s)∂+u(s), ϕ
)

+ (c(s)u(s), ϕ) + 〈fh(s), ϕ〉
}

ds.

Notation. In the above definition, ( , ) denotes the inner product in l0,2.

Finally, we state an existence and uniqueness result for the solution of the
discrete problem (8). The result also gives the stability of the approximation
scheme.
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The theorem is proved in [10] for the more general multidimensional case;
here, we just state its particularisation for the case of one dimension in space.
The result is obtained in [10] by showing that the discretised problem is con-
tained in the same general problem for evolution equations which the PDE
problem can be cast into.

Theorem 4. Let (1)−(2) in Assumption 2 and (1)−(2) in Assumption
3 be satisfied. Then problem (8) has a unique generalised solution u in [0, T ].
Moreover,

sup
0≤t≤T

|||u(t)|||20,2 +

∫ T

0
|||u(t)|||21,2dt ≤N

(

|||gh|||
2
0,2 +

∫ T

0
|||fh(t)|||

2
0,2dt

)

,

where N is a constant independent of h.

3. Approximation results

In this section, we are concerned with the consistency and convergence proper-
ties of the finite-difference scheme (8).

We emphasise that, by considering the special case of dimension one in
space, we can prove a result concerning the convergence rate sharper than the
corresponding result in [10] for the more general multidimensional case (see
Remark 5 below), which stresses its interest.

We address firstly the consistency of the scheme, and prove that the differ-
ence quotients approximate the partial derivatives (with accuracy of order 1,
as in the multidimensional case).

For that result, we assume that the weights ρ are bounded from below by
a positive constant. Notice that this amounts to assuming that the weights ρ
are increasing functions of |x|, which is precisely the case we are interested in.

Observe also that the close connection between our discrete framework and
the framework for problem (4) is crucial for obtaining the convergence rate.

Theorem 5. Take r and ρ positive functions on R, and assume that
ρ(x) ≥ C > 0 on R, with C a constant. Assume also that (1)−(3) in Assumption
1 are satisfied. Let u(t) ∈ W 2,2, v(t) ∈ W 3,2, for all t ∈ [0, T ]. Then there exists
a constant N independent of h such that

1.
∑

x∈Zh

r2(x)

∣

∣

∣

∣

∂

∂x
u(t, x)− ∂+u(t, x)

∣

∣

∣

∣

2

ρ2(x)h ≤ h2N‖u(t)‖22,2
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2.
∑

x∈Zh

r2(x)

∣

∣

∣

∣

∂2

∂x2
v(t, x)− ∂−∂+v(t, x)

∣

∣

∣

∣

2

ρ4(x)h ≤ h2N‖v(t)‖23,2,

for all t ∈ [0, T ].

Remark 4. Under the hypotheses of the above theorem, the function u(t)
(the function v(t)) has a modification in x which is continuously differentiable
in x up to the order 1 (up to the order 2), for every t ∈ [0, T ]. Also, the partial
derivatives in x up to the order 2 (up to the order 3) equal the weak derivatives
a.e., for every t ∈ [0, T ].

These assertions can be proved by Sobolev’s embedding of
Wm,2(B) into Cn(B), with B a ball in R, if m > 1

2 + n, and by Morrey’s
inequality (see, e.g., [7, 16]). These modifications are considered in the proof
of the theorem.

Remark 5. When particularising the hypotheses of the corresponding
multidimensional result in [10] to the case of one spatial dimension, we obtain
as assumptions that u(t) ∈ W 3,2 and v(t) ∈ W 4,2, for all t ∈ [0, T ], what is
stronger than assumed in Theorem 5.

In fact, in [10], the result is obtained making use of a Sobolev’s embedding,
while this is avoided in the proof of Theorem 5, by exploring the particular
geometry of R which allows us to consider weaker assumtpions.

Proof. (Theorem 5) We prove (1). Observe that the forward difference
quotient can be written

∂+u(t, x) = h−1(u(t, x+ h)− u(t, x)) =

∫ 1

0

∂

∂x
u(t, x+ hq)dq.

Thus

(

∂

∂x
− ∂+

)

u(t, x) =

∫ 1

0

(

∂

∂x
u(t, x)−

∂

∂x
u(t, x+ hq)

)

dq

= h

∫ 1

0

∫ 1

0
q
∂2

∂x2
u(t, x+ hqs)dsdq.

(9)

From (9), using Jensen’s inequality, we obtain
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∣

∣

∣

∣

(

∂

∂x
− ∂+

)

u(t, x)

∣

∣

∣

∣

2

≤ h2
∫ 1

0

∫ 1

0
q2

∣

∣

∣

∣

∂2

∂x2
u(t, x+ hqs)

∣

∣

∣

∣

2

dsdq

= h

∫ 1

0

∫ hq

0
q

∣

∣

∣

∣

∂2

∂x2
u(t, x+ v)

∣

∣

∣

∣

2

dvdq

≤ h

∫ 1

0
qdq

∫ h

0

∣

∣

∣

∣

∂2

∂x2
u(t, x+ v)

∣

∣

∣

∣

2

dv

=
h

2

∫ h

0

∣

∣

∣

∣

∂2

∂x2
u(t, x+ v)

∣

∣

∣

∣

2

dv

=
h

2

∫ x+h

x

∣

∣

∣

∣

∂2

∂z2
u(t, z)

∣

∣

∣

∣

2

dz.

(10)

Observe also that from (10), using (3) in Assumption 1 we have, for any
θ ∈ (0, 1),

r2(x)

∣

∣

∣

∣

(

∂

∂x
− ∂+

)

u(t, x)

∣

∣

∣

∣

2

ρ2(x)

≤ hNr2(x+ θh)ρ2(x+ θh)

∫ x+h

x

∣

∣

∣

∣

∂2

∂z2
u(t, z)

∣

∣

∣

∣

2

dz.

(11)

As, by the mean value theorem for integration, for some
θ ∈ (0, 1),

r2(x+ θh)ρ2(x+ θh)

∫ x+h

x

∣

∣

∣

∣

∂2

∂z2
u(t, z)

∣

∣

∣

∣

2

dz

=

∫ x+h

x
r2(z)

∣

∣

∣

∣

∂2

∂z2
u(t, z)

∣

∣

∣

∣

2

ρ2(z)dz,

(12)

from (11) and (12), using Hölder inequality, we obtain

r2(x)

∣

∣

∣

∣

(

∂

∂x
− ∂+

)

u(t, x)

∣

∣

∣

∣

2

ρ2(x)

≤ hN

∫ x+h

x
r2(z)

∣

∣

∣

∣

∂2

∂z2
u(t, z)

∣

∣

∣

∣

2

ρ4(z)dz · sup
z∈[x,x+h]

∣

∣ρ−2(z)
∣

∣

≤ hN

∫ x+h

x
r2(z)

∣

∣

∣

∣

∂2

∂z2
u(t, z)

∣

∣

∣

∣

2

ρ4(z)dz,

(13)

owing to the hypotheses on the weights ρ.
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Finally, summing up (13) over Zh, we get
∑

x∈Zh

r2(x)

∣

∣

∣

∣

(

∂

∂x
− ∂+

)

u(t, x)

∣

∣

∣

∣

2

ρ2(x)h ≤ h2N‖u(t)‖22,2,

with N a constant independent of h, and (1) is proved.

We now prove (2). By writing the forward and backward difference quo-
tients

∂+v(t, x) = h−1(v(t, x + h)− v(t, x)) =

∫ 1

0

∂

∂x
v(t, x+ hq)dq

and

∂−v(t, x) = h−1(v(t, x)− v(t, x− h)) =

∫ 1

0

∂

∂x
v(t, x− hs)ds,

respectively, we have for the second-order difference quotient

∂−∂+v(t, x) = ∂−

∫ 1

0

∂

∂x
v(t, x+ hq)dq

=

∫ 1

0

(

∂

∂x

∫ 1

0

∂

∂x
v(t, x + hq − hs)dq

)

ds

=

∫ 1

0

∫ 1

0

∂2

∂x2
v(t, x+ h(q − s))dsdq.

Thus,

(

∂2

∂x2
− ∂−∂+

)

v(t, x)

=

∫ 1

0

∫ 1

0

(

∂2

∂x2
(t, x)−

∂2

∂x2
v(t, x+ h(q − s))

)

dsdq

= h

∫ 1

0

∫ 1

0

∫ 1

0
(q − s)

∂3

∂x3
v(t, x+ hv(q − s))dvdsdq.

(14)

From (14), by Jensen’s inequality,

∣

∣

∣

∣

(

∂2

∂x2
− ∂−∂+

)

v(t, x)

∣

∣

∣

∣

2

≤ h2
∫ 1

0

∫ 1

0

∫ 1

0
|q − s|2

∣

∣

∣

∣

∂3

∂x3
v(t, x+ hv(q − s))

∣

∣

∣

∣

2

dvdsdq

= h

∫ 1

0

∫ 1

0

∫ h(q−s)

0
(q − s)

∣

∣

∣

∣

∂3

∂x3
v(t, x+ w)

∣

∣

∣

∣

2

dwdsdq
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≤ h

∫ 1

0

∫ 1

0
|q − s| dsdq

∫ h

0

∣

∣

∣

∣

∂3

∂x3
v(t, x +w)

∣

∣

∣

∣

2

dw

≤ h

∫ h

0

∣

∣

∣

∣

∂3

∂x3
v(t, x+ w)

∣

∣

∣

∣

2

dw = h

∫ x+h

x

∣

∣

∣

∣

∂3

∂z3
v(t, z)

∣

∣

∣

∣

2

dz,

and, following the same steps as in the proof of (1), we finally obtain

∑

x∈Zh

r2(x)

∣

∣

∣

∣

(

∂2

∂x2
− ∂−∂+

)

v(t, x)

∣

∣

∣

∣

2

ρ4(x)h ≤ h2N‖v(t)‖23,2,

with N a constant independent of h, and (2) is proved.

Following the same steps as in the proof of the corresponding result in [10]
for the multidimensional case, and having the stability and consistency proper-
ties of the approximation scheme into account (Theorems 4 and 5, respectively),
we can prove the convergence of the discrete problem’s solution to the solution
of the PDE problem, and compute a rate of convergence. The accuracy of the
scheme is of order 1.

The result is obtained by imposing additional regularity on the exact solu-
tion of problem (4) so that Theorem 5 holds, but lesser than it is assumed in
the corresponding result in [10] (see Remark 5).

Theorem 6. Let r and ρ be positive functions on R, and assume that
ρ(x) ≥ C on R, with C a positive constant. Assume that the hypotheses of
Theorems 2 and 4 hold. Denote by u the solution of problem (4) given by
Theorem 2 and by uh the solution of problem (8) in Theorem 4. Assume also
that u ∈ L2

(

[0, T ];W 3,2
)

, and that (3) in Assumption 1 is satisfied. Then

sup
0≤t≤T

|||u(t)− uh(t)|||
2
0,2 +

∫ T

0
|||u(t)− uh(t)|||

2
1,2dt

≤ h2N

∫ T

0
‖u(t)‖23,2dt+N

(

|||g − gh|||
2
0,2 +

∫ T

0
|||f(t)− fh(t)|||

2
0,2dt

)

,

with N a constant independent of h.

Remark 6. Under the hypotheses of the Theorem 6, there exist modifica-
tions in x that ensure the continuity of f(t) and g in x, for every t ∈ [0, T ] (see
Remark 4). These modifications will be considered in the proof of the theorem.
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Proof. (Theorem 6) From (4) and (8), the function u − uh satisfies the
problem

{

(u− uh)t = Lh(u− uh) + (L− Lh)u+ (f − fh) in Q(h)

(u− uh)(0, x) = (g − gh)(x) in Zh.
(15)

By Remark 6, it follows that f − fh ∈ L2
(

[0, T ]; l0,2
)

and g − gh ∈ l0,2.

As for (L− Lh)u, observe that for u(t) ∈ W 3,2 for all t ∈ [0, T ],

∑

x∈Zh

r2(x) |(L− Lh)(t)u(t)|
2 h

=
∑

x∈Zh

r2(x)

∣

∣

∣

∣

a(t, x)

(

∂2

∂x2
− ∂−∂+

)

u(t, x)

+b(t, x)

(

∂

∂x
− ∂+

)

u(t, x)

∣

∣

∣

∣

2

h ≤ h2N‖u(t)‖23,2 < ∞,

due to (2) in Assumption 2 and to Theorem 5. Thus (L−Lh)(t)u(t) ∈ l0,2, for
every t ∈ [0, T ]. Moreover, as it is assumed that u ∈ L2

(

[0, T ];W 3,2
)

, we derive
immediately (L− Lh)u ∈ L2

(

[0, T ]; l0,2
)

.

As we showed that problem (15) satisfies the hypotheses of Theorem 4, the
following estimate holds

sup
0≤t≤T

|||u(t)− uh(t)|||
2
0,2 +

∫ T

0
|||u(t)− uh(t)|||

2
1,2dt

≤ N

(

|||g − gh|||
2
0,2 +

∫ T

0
|||f(t)− fh(t)|||

2
0,2dt

+

∫ T

0
|||(L− Lh)(t)u(t)|||

2
0,2dt

)

.

Again from (2) in Assumption 2 and taking Theorem 5 into account, the result
follows.

As an immediate consequence of Theorem 6 we obtain the following result.

Corollary 7. Suppose that the hypotheses of Theorem 6 hold. Denote
by u the solution of (4) in Theorem 2 and by uh the solution of (8) given by
Theorem 4. If there is a constant N independent of the discretisation step h
such that
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|||g − gh|||
2
0,2+

∫ T

0
|||f(t)− fh(t)|||

2
0,2dt

≤ h2N

(

‖g‖20,2 +

∫ T

0
‖f(t)‖2−1,2dt

)

,

then

sup
0≤t≤T

|||u(t)− uh(t)|||
2
0,2 +

∫ T

0
|||u(t)− uh(t)|||

2
1,2dt

≤ h2N

(∫ T

0
‖u(t)‖23,2dt+ ‖g‖20,2 +

∫ T

0
‖f(t)‖2−1,2dt

)

.

4. An example

In this section we illustrate the above approximation study by considering an
example.

In problem (4), we specify the PDE coefficients

a(t, x) = (1 + t)(1 + x2), b(t, x) = 2tx, and c(t, x) = sin(tx),

and the free data

f(t, x) = t(1 + x3), and g(x) = (1 + x3).

Then, problem (4) reads

ut = Lu+ t(1 + x3) in Q, u(0, x) = (1 + x3) on R, (16)

where

L = (1 + t)(1 + x2)
∂2

∂x2
+ 2tx

∂

∂x
+ sin(tx).

Consider also the weight functions

r(x) = (1 + x2)β , with β < −11/4, and ρ(x) = (1 + x2)1/2.

Take m = 2, and consider the functional setting in Section 2 as underlying
the study of problem (16). It can be easily checked that the hypotheses of
Theorem 2 are satisfied:

• the weights r, and ρ satisfy (1) − (2) in Assumption 1 (with m = 3 as
required in Theorem 2);
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• the coefficients a, b, and c satisfy (1) − (2) in Assumption 2;

• the free data f , and g satisfy (3) in Assumption 2.

Thus Theorem 2 ensures that there exists a unique generalised solution u
of the particular PDE problem (16) such that

u ∈ C
(

[0, T ];W 2,2
)

∩ L2
(

[0, T ];W 3,2
)

, (17)

and

sup
0≤t≤T

‖u(t)‖22,2 +

∫ T

0
‖u(t)‖23,2dt ≤ N

(

‖g‖22,2 +

∫ T

0
‖f(t)‖21,2dt

)

, (18)

with N a constant.
We now discretise problem (16) on the h-grid Zh on R defined by (5).
For x ∈ Zh and t ∈ [0, T ], define

fh(t, x) := f(t, x) = t(1 + x3), and gh(x) := g(x) = (1 + x3),

discrete versions of f and g, respectively. We then obtain the family of ordinary
differential equations in the time variable t

ut(t, x) = Lhu(t, x) + t(1 + x3) in Q(h), (19)

with Q(h) = [0, T ] × Zh, and satisfying

u(0, x) = (1 + x3) in Zh, (20)

where the operator Lh is defined by

Lh(t, x) := a(t, x)∂+∂− + b(t, x)∂+ + c(t, x),

with ∂+ and ∂− the forward and backward difference quotient operators in
space defined, respectively, by (6) and (7).

Let us consider problem (19)− (20) under the discrete functional setting in
Section 2. It is clear that:

• fh ∈ L2
(

[0, T ]; l0,2
)

and gh ∈ l0,2,

and so (1)− (2) in Assumption 3 are satisfied. Thus the hypotheses of Theorem
4 are satisfied, and the result ensures that there exists a unique generalised
solution uh of the particular problem (19) − (20).

For the convergence, notice that

• ρ(x) = (1 + x2)1/2 ≥ 1 on R;

• u ∈ L2
(

[0, T ];W 3,2
)

, by (17).
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Consequently, the convergence result Theorem 6 holds. Moreover, as

|||g − gh|||
2
0,2 +

∫ T

0
|||f(t)− fh(t)|||

2
0,2dt = 0,

due to the chosen discretisation of f and g, owing to (18) the rate of convergence
of the generalised solution of problem (19)− (20) to the generalised solution of
problem (16) in Theorem 6 writes

sup
0≤t≤T

|||u(t)− uh(t)|||
2
0,2 +

∫ T

0
|||u(t)− uh(t)|||

2
1,2dt

≤ h2N

(

‖g‖22,2 +

∫ T

0
‖f(t)‖21,2dt

)

,

with N a constant independent of h.

5. Final remarks

We investigated the finite-difference spatial approximation of the Cauchy prob-
lem for linear parabolic PDEs of second order with nondivergent operator and
unbounded time- and space-dependent coefficients. By concentrating on the
case of one spatial dimension, we could exploit specific geometric properties of
R and deduce consistency and convergence results sharper than those obtained
in [10] for the more general multidimensional case. An estimate for the rate of
convergence was given.

The approximation was pursued in the framework of the variational ap-
proach. The integrability issues raised by the unboundedness in space of the
partial differential operator coefficients, and the possible spacial growth of both
the free term f and the initial data g, were handled by considering a suitable
class of weighted Sobolev spaces, and its zero and first-order discrete versions.

Our work presents two obvious limitations: the assumption that the PDE
does not degenerate, and also low accuracy of the approximation we produced,
which is not good enough for practical purposes.

In this connection, possible further research directions include: (i) the ap-
proach of the corresponding degenerate case (for this, the results obtained in
[12, 13] and also the work [1] will play an important role), and (ii) the use of
splitting-up methods (see [14]), following Richardson’s idea to accelerate nu-
merical schemes.
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[8] F.F. Gonçalves, Numerical approximation of partial differential equations
arising in financial option pricing, Ph.D. Thesis, University of Edinburgh,
UK (2007).
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