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1. Introduction

In this field, the works of Lebesgue, I.P. Natanson, [.P. Korovkin, F.I. Kharshi-
ladze, A.Z. Turetskiy, R.G. Mamedov, A.D. Hajiyev and others should be men-
tioned.

One of the important problems in approximation theory is finding saturation
classes of linear operators in various spaces. The saturation problem was first
stated by Favour in 1937.
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Aleksich, Zamanskiy, Alyanchich, Kharshiladze, Turetskiy, Butzer, Berents,
Nessel, Sunouchi, Mamedov and others have obtained many important results
in solving the problem on definition of saturation classes. Berents and Butzer
[1] determined the class and order of saturation of approximation of the function
J(t) (e7¢tf(t) € Ly(0,00), C > 0,p > 1) by the linear operator

R(fi2) = A / flx — D) Ex(t)dt
0

with a positive kernel K (t) = AK (At) > 0 in the metric of the space Ly(0;00).
They showed that the saturation order is 0(A™7) (0 < v < 1).

Using the Fourier transformation, Butzer, Nessel [3], Sunouchi [4], Mamedov
[6] and others determined the order and class of saturation of different singular
integrals and linear operators in the space L, (—00;00).

The basic results obtained for the last years by different authors solution
of the saturation problem were stated in detail in the monographs of Mamedov
[6], and Butzer-Berents [2].

In this paper, we suggest a method for constructing a new linear operator
on the base of the given operators that gives a high approximation order to
multiply differentiable functions.

Let LE(RT) be a space of measurable in R*(0;+00) functions f(z), for
which || f[|zzg+) < oo(o > 0), where

00 1/p
{f \e_"’”f(@\pda:} for 1 <p < oo
0

suporai |f(x)e”%%| for p= o0

1f @) 2y =

Let the function f(z) € L5 (RT), then the Laplace transformation of the func-
tion f(z) is determined by

fAs) = /e_s‘vf(x)dx (s =0+ir, Res =0 >0),
0

where the integral converges absolutely for Res > 0. Now, let ¢(x) be a function
with a bounded variation on the segment [0,r] for any r > 0, i.e. @(z) €

BV (0,r) and [ e 7" |dp(t)| < oo for each o > 0.
0
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Then the Laplace-Stieltjes transformation of the function ¢(x) is determined
in the following way ([2])

o0

\(5) = / e Td(p(z) (s =0 +ir),

0

where the integral converges absolutely for Res = ¢ > 0. Consider approxima-
tion of functions f(z) by linear operators of the form

m—1
QY (f52) = Rai(Rope (Rae(f32))-) — Y O‘K—ff)f(“(x), (1)
v=1

where [ € N, a,(l) (v=0,N — 1) are real numbers and

x

Ran(giz) = A / g(z — KMt (n=T.e), (2)
0

Ky, (t) = AK,,(\t) are the functions determined on R™ called kernels with the
properties:

K)\,n(t) S L(RJr)v /K)\,n(t)dt =1
0

and

/KA,n(t)dt 1 (Ao ), (n=Tre).
0

Obviously, if f*)(z) € LH(RT) (1 < p < oo, v =0,m — 1), then the integral
operator (1) exists almost everywhere on R* and Q[;n]’l( fix) € LE(RT).

The condition D,,(«(e), B(e)): If for real numbers ay(e) (v = 0,m —1,
ap(e) = 1) and B(e) # 0 it holds

-1

i (3) [T (5) - S o (3)

3

— B(e) 40,

Il
=)

v

for some fixed s(Res > 0), it is said that the kernel K, (t) operator (2) satisfies
the condition D,,(a(e), B(e)), where

ale) = (ag(e), ar(e), ...,am—1(€)).
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Denote by a,(s”; f) a class of functions f(x), having derivatives f*)(z) €
LH(RY) and fW)(z) € AC, (RT) (v=1, N —1).
Introduce the class of functions

bp(s"; f)
{ f(@) € ar(s¥; f)/s™ [ N(s) = hY(s), ifhi(t) € BV, (R")
=< JoT e dha(t)] < 4o, if p=1
f(x) € ap(s¥; f)/s" [ (s) = hy(s), if ha(t) € Lo(RT), p > 1

2. On linear operators giving higher order approximation of
functions in LY (RT)

Theorem 1. Let the kernel Ky, (t) = MK, (\t) (n = 1,e) of operator
(2) satisfy the condition Dp,(c(e), B(e)) and f(t) € ap(s”, f). Then, if for the
function g(t) (g(t) € L5(RT),p > 1) the condition

H)‘_ [Bai1(Ra2((Rae(f :2)).)

— 0(1) (3)

L& (RY)
is fulfilled as A — oo, the function f(z) has a m order derivative and g(x) =
B(e)f™)(z) almost everywhere.

Proof. Let p =1, since f(z) € ai(s"; f), then

xm [HK/\<> mzlay (;)”] () = 9"s)

v=

= /e—a:s {/\m [R)\vl(R)\vg(.--(RA,e(ﬂ 13))))
0

m—1

-2 ai(f)f(”)(x)] —g<x>} dr. @

v=0

By the conditions of the theorem, from the last equality we find

" [HKA() mzlay (§)”]fA<s>—gA<s>

v=

= 0(1)




ON LINEAR OPERATORS GIVING HIGHER... 19

as A — 00.
Since K,,(t) (n =1,e) satisfies the condition D,,(c(e), B(e)), then

B(e)s™ ["(s) = g"(s), (5)

for each s (Res > 0), or

almost everywhere.
Let 1 < p < oo. For 0 < ¢/ < o by means of the Holder inequality, from (4)

we get
X" [H K (2) - X ate (;)”] INORYA0

v=0

< e (R Rao (B F50)) )

—Z 2ul®) ), ]m—go:) {ﬁ} (6)

where pqg = p + q.
The further reasoning is conducted similarly to the proof of the case p = 1.

LP(R+)

Theorem 2. Let the kernel K) ,(t) = AK,,(At) (n = 1,e) of operator (2)
satisfy the condition D,,(a(e), B(e)). If for the function f(t) € LL(R™) the
condition

m—1
ay(e o

Ry (Raal(Rae(Fi2).0) = 3 2D 0@ —opmy @)

v=0 LP(R+)

is fulfilled as A — oo, then f(x) € by(s*; f) (v=0,m, p>1)

Proof. Let p = 1. Consider the partial integral
ST,)\(J:)
o+iT m—1

_ A A

0 K| YR SECICO N ACTA

where o > 0 and 7 > 0 are any numbers.
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Feier’s mean values o, )(x) of partial integrals S- \(z) equal

o+ir’

oo s
n=1

’

,r./
1 1
o a(z) = W/Sﬂ)\(l‘)dT =5
0 o

—r

—1 r’ o0
S\" 1 T o+1iT)x —(o+17)u
- ay(e) (X) ds = 5 (1-— %)e( +i7) {/6 (o-+i7)

v=0 S s
m—1

< Ry 1(Raa(o(Rae(fiu)) = Y “gﬂf)f@)(u)] du} dr.
v=0

Since by Lemma A (see [1]), the internal integral converges uniformly on
—r' <7 < 7', then
- 2 PN

2 i’ - 25U
7o) = =5 [ e S (B (ool B fi0).0)
0

Further, taking into account (7), we get

lora (@)1, (Cooproo) < AR 2( (B c(f30))--.))

m—1
(e _
N DV ICIE) P (10)
v=0 LE(RT)
as A — 00.
Consequently,
1 o+ir’ | | e
- o L sx N f
2mi / ( r’>e [gKn (A)
m—1 a (6)
— l)}\U s”] f(s)ds =0W\™). (11)
v=0 Lo (—00;400)
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Furthermore, by the condition D,,(a(e), B(e)), we have

w8 (3) - S o (3)°

and

e (1 |T‘ [HK/\<) Zlav(e) (;)v] f/\(s).)\m‘

v=0
< 2B(e) - |s™| - \fA |

for each A > X\g |7| <1/, where s = o + i, 0 > 0.
Consequently,

,r./

e)/|0+i7’\m‘f/\(a+i7')‘d7'§2B(e)/(02+7'2)

/

m
2
T

oo

y /e—at F0)]dt | dr < M < oo,
0
Since e~ |O'T/ Az ‘ )| A" > 0 and estimation (9) is valid, then
[e.e]
/ e 7 o A (z)| A™dx < oo.

Thus, the requirements of the Fatou lemma are fulfilled and taking into
account (9), we find:

o+ir’
1 ‘ | e m /A —
- //(1—7> B(e)s™ f(s)ds = 0(1).

Lo (—00;4-00)

To complete the proof of f(z) € by(s”; f), (v =
apply Lemma A in [1].

m) for p = 1 we should

Let 1 < p < oco. By (4) and the theorem on weak compactness in the
space LP(R™), there exists a sequence {\;} <lim Aj = oo> and a function
j—00
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qu]( ) € LP(R™) such that

lim [ e g@y [QUM(fia) ~ ()] da
0

- / o)™ (), (12)
0

for each g(t) € LP(R"), pg = p+ q (¢ > 0 is any number), where Qg\nﬂ’e(f; t) is
J

determined from formula (12). Then, it is obvious that h(t) = eatqgm} (t).
Now, if in equality (12) instead of g(x) we take the function of the form

g(z) = el (550 —00 < 7 < 0),

we have
/\hm /\m/esx[QE\n_ﬁb]’e(f;x) — f(z)]dx = /esxg(x)dx (Res > 0).
—00 J
0 0

Hence, by the condition D,,(a(e), B(e)), we find B(e)s™f (s) = g¢"\(s), i.e.
f(x) € by(s’; f). This is the required relation for 1 < p < oco. In the case
p = 00, the required one is proved in the same way.

Theorem 3. Let the kernel Ky ,(t) = MK, (M) (n = 1,e) satisfy the
condition D,,(a(e), B(e)) and be such that the function

e (§) =i () [T ) -E w0 ()]

is the Laplace-Stielties transformation of the normalized function with bounded
variation on Rt for p = 1 or the Laplace transformation of functions in the space
L(R™) for p > 1. Then from f(x) € by(s"; f) (v =0,m), the relation

m—1

| Rai(Ra2(..(Rae(f52)

v=0

is fulfilled as X — oo.
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Proof. Let p = 1. Since f(z) € bi(s% f) (v = 0,m) and b, (%) is a
Laplace-Stielties transformation of the normalized function with bounded varia-
tion on R* Le. Om.e (%) = Ny (3)
(Nm.e(x) € BV(0,1)).

o0

[ e % |dNpe(z)| < 0o, we apply Lemma A in [1] and find
0

o0 m—1 a (6
/ —sx R)\ 1(R)\ 2( (R)\ e f, 1))\1) ] Nz
0 v=0

Il
—
S
Il
o

~ U= 7 d|J (@ (13)
My 0

where

Unine (@) = [ (o = 0N (), Upnelo) € BV (0,1
0

for each » > 0 and the relation

oo

/ e U e ()] < Ma < o (14)
0

is satisfied for all A > 0.
According to the uniqueness of the Laplace-Stielties transformation ([2], p.
62), from (13) we have:

x

m—1
Urxme(z) = Am/ Ry1(Ra2(..(Rae(f3t))...)) — a;\(f)f(v)(t) dt
0 v=0
Consequently, by (15) we find
x m—1
[ BBl (R fi)))) = 30 S5 0 @) = o)
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as A — oo. This is relation (4) for p = 1. Let 1 < p < co. Since f(z) € b,(s"; f)
and 0y, ¢ (5) is a Laplace transformation of the function from the space L(R"),
then ([4], p. 92), we have

A
Rai(Raz (o (Rye(f3 ) }j “ff AL (s)

z A

— |AB(e) / £ (& — whg e (Cu)du| (),
0
for Res > 0, where Qe () = e (5) 5 (Arme(t) € L(RT)).
By the theorem on uniqueness of the Laplace transformation ([6], p. 63),
from the last relation we find

m—1

Rya1(Ry2(.-(Rae(f; ) AT

v=0

x

— AB(e) / £ (@ — ) o (M), (15)
0
Furthermore, by the Holder inequality, we have

T p

AB(e) / £ (@ — Yoo (t)dt

0 LE(R+)

< B@) Mome Ol ey [F @], =0

Lg(RY)
as A — 0o.
Then, the validity of relation (4) follows from equality (15). Notice that for
p = oo the reasonings are conducted similarly.
It follows from Theorem 2 that the family of operators (1) is saturated in
the space L5 (R™) (p > 1) with order O(A™™) and b, (s"; f) is a saturation class.
Apply the obtained results to one concrete linear operator:

m—1
(1) = Ba(RAC(Ba(fr).0) — Y0 20D 0w, (ag)
v=0

where
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and

x

Ra(fiz) =X | flxz—t)e Mdt
/
(=1)ve(e+1)...(e+v—1)

ay(e) = o .

It is easily verified that the operator (16) is saturated in the space L5 (R™)

(p > 1) with order O(A™") and by(s"; f) (v =0,m), is its saturation order.

1]
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