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1. Introduction

In this field, the works of Lebesgue, I.P. Natanson, I.P. Korovkin, F.I. Kharshi-
ladze, A.Z. Turetskiy, R.G. Mamedov, A.D. Hajiyev and others should be men-
tioned.

One of the important problems in approximation theory is finding saturation
classes of linear operators in various spaces. The saturation problem was first
stated by Favour in 1937.
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Aleksich, Zamanskiy, Alyanchich, Kharshiladze, Turetskiy, Butzer, Berents,
Nessel, Sunouchi, Mamedov and others have obtained many important results
in solving the problem on definition of saturation classes. Berents and Butzer
[1] determined the class and order of saturation of approximation of the function
f(t) (e−c tf(t) ∈ Lp(0,∞), C > 0, p ≥ 1) by the linear operator

R(f ;x) = λ

x
∫

0

f(x− t)Kλ(t)dt

with a positive kernel Kλ(t) = λK(λt) > 0 in the metric of the space Lp(0;∞).
They showed that the saturation order is 0(λ−γ) (0 < γ ≤ 1).

Using the Fourier transformation, Butzer, Nessel [3], Sunouchi [4], Mamedov
[6] and others determined the order and class of saturation of different singular
integrals and linear operators in the space Lp(−∞;∞).

The basic results obtained for the last years by different authors solution
of the saturation problem were stated in detail in the monographs of Mamedov
[6], and Butzer-Berents [2].

In this paper, we suggest a method for constructing a new linear operator
on the base of the given operators that gives a high approximation order to
multiply differentiable functions.

Let Lp
σ(R+) be a space of measurable in R+(0;+∞) functions f(x), for

which ‖f‖Lp
σ(R+) < ∞(σ > 0), where

‖f(x)‖Lp
σ(R+) =







{

∞
∫

0

|e−σxf(x)|
p
dx

}1/p

for 1 ≤ p < ∞

sup vrai |f(x)e−σx| for p = ∞

.

Let the function f(x) ∈ Lp
σ(R+), then the Laplace transformation of the func-

tion f(x) is determined by

f∧(s) =

∞
∫

0

e−sxf(x)dx (s = σ + iτ, Res = σ > 0),

where the integral converges absolutely for Res > 0. Now, let ϕ(x) be a function
with a bounded variation on the segment [0, r] for any r > 0, i.e. ϕ(x) ∈

BV (0, r) and
∞
∫

0

e−σi |dϕ(t)| < ∞ for each σ > 0.



ON LINEAR OPERATORS GIVING HIGHER... 17

Then the Laplace-Stieltjes transformation of the function ϕ(x) is determined
in the following way ([2])

ϕ∧(s) =

∞
∫

0

e−sxd(ϕ(x)) (s = σ + iτ),

where the integral converges absolutely for Res = σ > 0. Consider approxima-
tion of functions f(x) by linear operators of the form

Q
[m],l
λ (f ;x) = Rλ,1(Rλ,2...(Rλ,e(f ;x))...)) −

m−1
∑

v=1

αv(l)

λv
f (v)(x), (1)

where l ∈ N, αv(l) (v = 0, N − 1) are real numbers and

Rλ,n(g;x) = λ

x
∫

0

g(x− t)Kn(λt)dt (n = 1, e), (2)

Kλ,n(t) = λKn(λt) are the functions determined on R+ called kernels with the
properties:

Kλ,n(t) ∈ L(R+),

∞
∫

0

Kλ,n(t)dt = 1

and
x
∫

0

Kλ,n(t)dt → 1 (λ → ∞), (n = 1, e).

Obviously, if f (v)(x) ∈ Lp
σ(R+) (1 ≤ p < ∞, v = 0,m− 1), then the integral

operator (1) exists almost everywhere on R+ and Q
[m],l
λ (f ;x) ∈ Lp

σ(R+).
The condition Dm(α(e), B(e)): If for real numbers αv(e) (v = 0,m− 1,

α0(e) = 1) and B(e) 6= 0 it holds

lim
λ→∞

( s

λ

)

−m
[

e
∏

n=1

K∧

n

( s

λ

)

−

m−1
∑

v=0

αv(e)
( s

λ

)v
]

= B(e) 6= 0,

for some fixed s(Res > 0), it is said that the kernel Kn(t) operator (2) satisfies
the condition Dm(α(e), B(e)), where

α(e) = (α0(e), α1(e), ..., αm−1(e)).



18 A.M. Musayev

Denote by ap(s
ν ; f) a class of functions f(x), having derivatives f (ν)(x) ∈

Lp
σ(R+) and f (ν)(x) ∈ ACloc(R

+) (ν = 1, N − 1).
Introduce the class of functions

bp(s
v; f)

=







f(x) ∈ a1(s
v; f)/smf∧(s) = h∨1 (s), if h1(t) ∈ BVσ(R

+)
∫

∞

0 e−σt |dh1(t)| < +∞, if p = 1
f(x) ∈ ap(s

v; f)/smf∧(s) = h∨2 (s), if h2(t) ∈ Lp
σ(R+), p > 1

.

2. On linear operators giving higher order approximation of

functions in Lp
σ(R+)

Theorem 1. Let the kernel Kλ,n(t) = λKn(λt) (n = 1, e) of operator

(2) satisfy the condition Dm(α(e), B(e)) and f(t) ∈ ap(s
v, f). Then, if for the

function g(t) (g(t) ∈ Lp
σ(R+), p ≥ 1) the condition

∥

∥λ−m [Rλ,1(Rλ,2(...(Rλ,e(f : x))...))

−

m−1
∑

v=0

αv(e)

λv
f (v)(x)− g(x)

∥

∥

∥

∥

∥

Lp
σ(R+)

= 0(1) (3)

is fulfilled as λ → ∞, the function f(x) has a m order derivative and g(x) =
B(e)f (m)(x) almost everywhere.

Proof. Let p = 1, since f(x) ∈ a1(s
v; f), then

λm

[

e
∏

n=1

K∧

n

( s

λ

)

−
m−1
∑

v=0

αv(e)
( s

λ

)v
]

f∧(s)− g∧(s)

=

∞
∫

0

e−xs {λm [Rλ,1(Rλ,2(...(Rλ,e(f ;x))...) )

−
m−1
∑

v=0

αv(e)

λv
f (v)(x)

]

− g(x)

}

dx. (4)

By the conditions of the theorem, from the last equality we find
∣

∣

∣

∣

∣

λm

[

e
∏

n=1

K∧

n

( s

λ

)

−

m−1
∑

v=0

αv(e)
( s

λ

)v
]

f∧(s)− g∧(s)

∣

∣

∣

∣

∣

= 0(1)
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as λ → ∞.
Since Kn(t) (n = 1, e) satisfies the condition Dm(α(e), B(e)), then

B(e)smf∧(s) = g∧(s), (5)

for each s (Res > 0), or

g(x) = B(e)f (m)(x)

almost everywhere.
Let 1 < p < ∞. For 0 < σ′ < σ by means of the Hölder inequality, from (4)

we get
∣

∣

∣

∣

∣

λm

[

e
∏

n=1

K∧

n

( s

λ

)

−

m−1
∑

v=0

αv(e)
( s

λ

)v
]

f∨(s)− g∧(s)

∣

∣

∣

∣

∣

≤
∥

∥

∥
e−σ′t { [Rλ,1(Rλ,2(...(Rλ,e(f ;x))... ))

−

m−1
∑

v=0

αv(e)

λv
f (v)(x)

]

λm − g(x)

∥

∥

∥

∥

∥

Lp(R+)

·

{

1

(σ − σ′) · q

}
1

q

, (6)

where pq = p+ q.
The further reasoning is conducted similarly to the proof of the case p = 1.

Theorem 2. Let the kernel Kλ,n(t) = λKn(λt) (n = 1, e) of operator (2)
satisfy the condition Dm(α(e), B(e)). If for the function f(t) ∈ Lp

σ(R+) the

condition
∥

∥

∥

∥

∥

Rλ,1(Rλ,2(...(Rλ,e(f ;x)...)) −

m−1
∑

v=0

αv(e)

λv
f (v)(x)

∥

∥

∥

∥

∥

Lp
σ(R+)

= 0(λ−m) (7)

is fulfilled as λ → ∞, then f(x) ∈ bp(s
v; f) (v = 0,m, p ≥ 1).

Proof. Let p = 1. Consider the partial integral

Sτ,λ(x)

=
1

2πi

σ+iτ
∫

σ−iτ

esx

[

e
∏

n=1

K∧

n

( s

λ

)

−
m−1
∑

v=0

αv(e)
( s

λ

)v
]

f∧(s)ds, (8)

where σ > 0 and τ > 0 are any numbers.
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Feier’s mean values σr,λ(x) of partial integrals Sτ,λ(x) equal

σr′,λ(x) =
1

r′

r′
∫

0

Sτ,λ(x)dτ =
1

2πi

σ+ir′
∫

σ−ir′

(1−
|τ |

r′
)esx ·

e
∏

n=1

K∧

n

( s

λ

)

−

m−1
∑

v=0

αv(e)
( s

λ

)v
ds =

1

2πi

r′
∫

−r′

(1−
|τ |

r′
)e(σ+iτ)x







∞
∫

0

e−(σ+iτ)u

× R λ,1(Rλ,2(...(Rλ,e(f ;u)...)) −

m−1
∑

v=0

αv(e)

λv
f (v)(u)

]

du

}

dτ.

Since by Lemma A (see [1]), the internal integral converges uniformly on
−r′ ≤ τ < r′, then

σr′,λ(x) =
2

πr′

∞
∫

0

eσ(x−u) ·
sin2 r′ · x−u

2

(x− u)2
{Rλ,1(Rλ,2(...(Rλ,e(f ;u))...)

−
m−1
∑

v=0

αv(e)

λv
f (v)(u)

}

du. (9)

Further, taking into account (7), we get

‖σr;λ(x)‖Lσ(−∞;+∞) ≤ ‖Rλ,1(Rλ,2(...(Rλ,e(f ;u))...))

−

m−1
∑

v=0

αv(e)

λv
f (v)(x)

∥

∥

∥

∥

∥

Lp
σ(R+)

= 0(λ−m) (10)

as λ → ∞.

Consequently,

∥

∥

∥

∥

∥

∥

1

2πi

σ+ir′
∫

σ−ir′

(

1−
|τ |

r′

)

esx

[

e
∏

n=1

K∧

n

( s

λ

)

−
m−1
∑

v=0

αv(e)

λv
sv

]

f∧(s)ds

∥

∥

∥

∥

∥

Lσ(−∞;+∞)

= O(λ−m). (11)
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Furthermore, by the condition Dm(α(e), B(e)), we have

∣

∣

∣

∣

∣

λm

[

e
∏

n=1

K∧

n

( s

λ

)

−

m−1
∑

v=0

αv(e)
( s

λ

)v
] ∣

∣

∣

∣

∣

≤ B(e) |sm |

and
∣

∣

∣

∣

∣

e−σx(1−
|τ |

r′
)esx

[

e
∏

n=1

K∧

n

( s

λ

)

−

m−1
∑

v=0

αv(e)
( s

λ

)v
]

f∧(s) · λm

∣

∣

∣

∣

∣

≤ 2B(e) · |sm| ·
∣

∣f∧(s)
∣

∣

for each λ > λ0 |τ | < r′, where s = σ + iτ, σ > 0.

Consequently,

2B(e)

r′
∫

−r′

|σ + iτ |m
∣

∣f∧(σ + iτ)
∣

∣ dτ ≤ 2B(e)

r′
∫

−r′

(σ2 + τ2)
m
2

×





∞
∫

0

e−σt |f(t)| dt



 dτ ≤ M1 < ∞.

Since e−σx
∣

∣σr′,λ(x)
∣

∣λm > 0 and estimation (9) is valid, then

∞
∫

−∞

e−σx
∣

∣σr′,λ(x)
∣

∣λmdx < ∞.

Thus, the requirements of the Fatou lemma are fulfilled and taking into
account (9), we find:

∥

∥

∥

∥

∥

∥

1

2πi

σ+ir′
∫

σ−ir′

(1−
|τ |

r′
)esxB(e)smf∧(s)ds

∥

∥

∥

∥

∥

∥

Lσ(−∞;+∞)

= 0(1).

To complete the proof of f(x) ∈ bp(s
v; f), (v = 0,m) for p = 1 we should

apply Lemma A in [1].

Let 1 < p < ∞. By (4) and the theorem on weak compactness in the

space Lp(R+), there exists a sequence {λj}

(

lim
j→∞

λj = ∞

)

and a function
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q
[m]
e (x) ∈ Lp(R+) such that

lim
λ→∞

∞
∫

0

e−εxg(x)λm
j

[

Q
[m],e
λj

(f ;x)− f(x)
]

dx

=

∞
∫

0

g(x)q[m]
e (x)dx, (12)

for each g(t) ∈ Lp(R+), pq = p+ q (ε > 0 is any number), where Q
[m],e
λ
j

(f ; t) is

determined from formula (12). Then, it is obvious that h(t) = eεtq
[m]
e (t).

Now, if in equality (12) instead of g(x) we take the function of the form

g(x) = e−[(σ−ε)+iυ]x (σ > 0, −∞ < τ < ∞),

we have

lim
λj→∞

λm
j

∞
∫

0

e−sx[Q
[m],e
λj

(f ;x)− f(x)]dx =

∞
∫

0

e−sxg(x)dx (Res > 0).

Hence, by the condition Dm(α(e), B(e)), we find B(e)smf∧(s) = g∧(s), i.e.
f(x) ∈ bp(s

v; f). This is the required relation for 1 < p < ∞. In the case
p = ∞, the required one is proved in the same way.

Theorem 3. Let the kernel Kλ,n(t) = λKn(λt) (n = 1, e) satisfy the

condition Dm(α(e), B(e)) and be such that the function

θm,e

( s

λ

)

=
1

B(e)

( s

λ

)

−m
[

e
∏

n=1

K∧

n

( s

λ

)

−

m−1
∑

v=0

αv(e)
( s

λ

)v
]

,

is the Laplace-Stielties transformation of the normalized function with bounded

variation on R+ for p = 1 or the Laplace transformation of functions in the space

L(R+) for p > 1. Then from f(x) ∈ bp(s
v; f) (v = 0,m), the relation

‖Rλ,1(Rλ,2(...(Rλ,e(f ;x))...))−

m−1
∑

v=0

αv(e)

λv
f (v)(x)

∥

∥

∥

∥

∥

Lp
σ(R+)

= O(λ−m)

is fulfilled as λ → ∞.
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Proof. Let p = 1. Since f(x) ∈ b1(s
v; f) (v = 0,m) and θm,e

(

s
λ

)

is a
Laplace-Stielties transformation of the normalized function with bounded varia-
tion on R+ i.e. θm,e

(

s
λ

)

= Nv
m,e

(

s
λ

)

,
(Nm,e(x) ∈ BV (0, r)).

∞
∫

0

e−σx |dNm,e(x)| < ∞, we apply Lemma A in [1] and find

∞
∫

0

e−sx

[

Rλ,1(Rλ,2(...(Rλ,e(f ;x)...)) −

m−1
∑

v=0

αv(e)

λv
f (v)(x)

]

λmdx

= λmf∧(s)

[

e
∏

n=1

K∧

n

( s

λ

)

−
m−1
∑

v=0

αv(e)
( s

λ

)v
]

=

∨
⋃

λ,m,e

(s) ≡

∞
∫

0

e−sxd
⋃

λ,m,e

(x), (13)

where

Uλ,m,e(x) =

x
∫

0

h1(x− t)dNm,e(λt), Uλ,m,e(x) ∈ BV (0, r)

for each r > 0 and the relation

∞
∫

0

e−σx |dUλ,m,e(x)| ≤ M2 < ∞ (14)

is satisfied for all λ > 0.

According to the uniqueness of the Laplace-Stielties transformation ([2], p.
62), from (13) we have:

Uλ,m,e(x) = λm

x
∫

0

[

Rλ,1(Rλ,2(...(Rλ,e(f ; t))...)) −

m−1
∑

v=0

αv(e)

λv
f (v)(t)

]

dt.

Consequently, by (15) we find

λm

∫ x

0
e−σx |Rλ,1(Rλ,2(...(Rλ,e(f ;x))...)) −

m−1
∑

v=0

αv(e)

λv
f (v)(x)dx = 0(1)
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as λ → ∞. This is relation (4) for p = 1. Let 1 < p < ∞. Since f(x) ∈ bp(s
v; f)

and θm,e

(

s
λ

)

is a Laplace transformation of the function from the space L(R+),
then ([4], p. 92), we have

[

Rλ,1(Rλ,2(...(Rλ,e(f ;x))...)) −

m−1
∑

v=0

αv(e)

λv
f (v)(x)λm

]∧

(s)

=



λB(e)

x
∫

0

f (m)(x− u)h2,m,e(λu)du





∧

(s),

for Res > 0, where Qm,e

(

s
λ

)

= h∧r,m,e

(

s
λ

)

, (hr,m,e(t) ∈ L(R+)).
By the theorem on uniqueness of the Laplace transformation ([6], p. 63),

from the last relation we find
[

Rλ,1(Rλ,2(...(Rλ,e(f ;x))...)) −

m−1
∑

v=0

αv(e)

λv
f (v)(x)

]

λm

= λB(e)

x
∫

0

f (m)(x− t)hr,m,e(λt)dt. (15)

Furthermore, by the Hölder inequality, we have

∥

∥

∥

∥

∥

∥

λB(e)

x
∫

0

f (m)(x− t)h2,m,e(t)dt

∥

∥

∥

∥

∥

∥

p

Lp
σ(R+)

≤ B(e) · ‖hr,m,e(t)‖
p

q
+1

L(R+)
·
∥

∥

∥f (m)(x)
∥

∥

∥

p

Lp
σ(R+)

= O(1)

as λ → ∞.
Then, the validity of relation (4) follows from equality (15). Notice that for

p = ∞ the reasonings are conducted similarly.
It follows from Theorem 2 that the family of operators (1) is saturated in

the space Lp
σ(R+) (p ≥ 1) with order O(λ−m) and bp(s

v; f) is a saturation class.
Apply the obtained results to one concrete linear operator:

p
[m],e
λ (f ;x) = Rλ(Rλ(...(Rλ(f ;x))...)) −

m−1
∑

v=0

αv(e)

λv
f (v)(x), (16)

where
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Rλ(f ;x) = λ

x
∫

0

f(x− t)e−λtdt

and

αv(e) =
(−1)ve(e+ 1)...(e + v − 1)

v!
.

It is easily verified that the operator (16) is saturated in the space Lp
σ(R+)

(p ≥ 1) with order O(λ−ν) and bp(s
v; f) (v = 0,m), is its saturation order.
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