HARDY OPERATORS IN THE LOCAL "COMPLEMENTARY"
GENERALIZED VARIABLE EXPONENT WEIGHTED
MORREY SPACES

Abstract

In this paper we consider local “complementary" generalized weighted Morrey spaces ${{}^c \cal M}_{\{x_0\}}^{p(\cdot),\omega,\varphi}(\Omega)$ with variable exponent $p(x)$ and a general function $\omega(r)$ defining the weighted Morrey-type norm. We prove the boundedness of the Hardy operators in the spaces ${{}^c \cal M}_{\{x_0\}}^{p(\cdot),\omega,\varphi}(\Omega)$ in case of unbounded sets $\Omega \subset R^n$.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 33
Issue: 4
Year: 2020

DOI: 10.12732/ijam.v33i4.11

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] A. Almeida, J.J. Hasanov, S.G. Samko, Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J., 15, No 2 (2008), 1-15.
  2. [2] Z.O. Azizova, J.J. Hasanov, The weighted Hardy operator and it is commutator on Orlicz-Morrey spaces, Intern. J. of Pure and Appl. Math., 118, No 2 (2018), 385-395.
  3. [3] D. Cruz-Uribe, A. Fiorenza, J.M. Martell, C. Perez, The boundedness of classical operators on variable Lp spaces, Ann. Acad. Scient. Fennicae, Math., 31 (2006), 239-264.
  4. [4] L. Diening, Maximal functions on generalized Lebesgue spaces Lp(x), Math. Inequal. Appl., 7, No 2 (2004), 245-253.
  5. [5] L. Diening, P. Harjulehto, P. H¨ast¨o, M. Ruˇziˇcka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, SpringerVerlag, Berlin (2011).
  6. [6] L. Diening, P. H¨ast¨o, A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, In: ’Function Spaces, Differential Operators and Nonlinear Analysis’, Proc. of the Conference held in Milovy, Bohemian-Moravian Uplands, May 28 - June 2, 2004, Math. Inst. Acad. Sci. Czech Republick, Praha (2005), 38-58.
  7. [7] L. Diening, M. R¨u´zi´cka, Calder´on-Zygmund operators on generalized Lebesgue spaces Lp(·) and problems related to fluid dynamics, J. Reine Angew. Math., 563 (2003), 197-220.
  8. [8] G. Di Fazio, M.A. Ragusa, Commutators and Morrey spaces, Bollettino U.M.I., 7, No 5-A (1991), 323- 332.
  9. [9] J. Garcia-Cuerva, E. Harboure, C. Segovia, J.L. Torrea, Weighted norm inequalities for commutators of strongly singular integrals, Indiana Univ. Math. J., 40, No 4 (1991), 1397-1420.
  10. [10] V.S. Guliyev, S.G. Samko, Maximal, potential and singular operators in the generalized variable exponent Morrey spaces on unbounded sets, J. Math. Sci. (N. Y.), 193, No 2 (2013), 228-248.
  11. [11] V.S. Guliyev, J.J. Hasanov, S.G. Samko, Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces, Math. Scand., 107 (2010), 285-304.
  12. [12] V.S. Guliyev, J.J. Hasanov, S.G. Samko, Boundedness of the maximal, potential and singular integral operators in the generalized variable exponent Morrey type spaces, J. Math. Sci., 170, No 4 (2010), 423-443.
  13. [13] V.S. Guliyev, J.J. Hasanov, S.G. Samko, Maximal, potential and singular operators in the local “complementary” variable exponent Morrey type spaces, J. Math. Sci., 193, No 2 (2013), 228-248.
  14. [14] A. Karlovich, A. Lerner, Commutators of singular integrals on generalized Lp spaces with variable exponent, Publ. Math., 49, No 1 (2005), 111-125.
  15. [15] V. Kokilashvili, A. Meskhi, Boundedness of maximal and singular operators in Morrey spaces with variable exponent, Arm. J. Math. (Electronic), 1, No 1 (2008), 18-28.
  16. [16] O. Kovacik, J. Rakosnik, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., 41, No 116 (1991), 592-618.
  17. [17] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126-166.
  18. [18] T. Mizuhara, Boundedness of some classical operators on generalized Morrey spaces, Harmonic Analysis (S. Igari, Ed.), ICM 90 Satellite Proceedings, Springer - Verlag, Tokyo (1991), 183-189.
  19. [19] Y. Mizuta, T. Shimomura, Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent, J. Math. Soc. Japan, 60 (2008), 583-602.
  20. [20] D. Lukkassen, L.-E. Persson, S. Samko, P. Wall, Weighted Hardy operators in complementary Morrey Spaces, J. Funct. Spaces Appl., 2012; doi:10.1155/2012/283285.
  21. [21] D. Lukkassen, L.-E.Persson, S. Samko, P.Wall, Weighted Hardy-type inequalities in variable exponent Morrey-type spaces, J. Funct. Spaces Appl., 2013; doi:10.1155/2013/716029.
  22. [22] D. Lukkassen, L.-E.Persson, N. Samko, Hardy type operators in local vanishing Morrey spaces on fractal sets, Fract. Calc. Appl. Anal., 18, No 5 (2015), 1252-1276.
  23. [23] J. Peetre, On the theory of Lp, spaces, J. Funct. Anal., 4 (1969), 71-87.
  24. [24] S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators, Integral Transforms Spec. Funct., 16, No 5-6 (2005), 461-482.
  25. [25] C. Segovia, J.L. Torrea, Higher order commutators for vector-valued Calder´on - Zygmund operators, Trans. Amer. Math. Soc., 336, No 2 (1993), 537-556.
  26. [26] I.I. Sharapudinov, The topology of the space Lp(t)([0, 1]), Mat. Zametki, 26, No 3-4 (1979), 613-632.