In this paper we consider local “complementary" generalized weighted Morrey spaces
with variable exponent and a general
function defining the weighted Morrey-type norm. We prove the boundedness
of the Hardy operators in the spaces
in case of unbounded sets
.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] A. Almeida, J.J. Hasanov, S.G. Samko, Maximal and potential operators
in variable exponent Morrey spaces, Georgian Math. J., 15, No 2 (2008),
1-15.
[2] Z.O. Azizova, J.J. Hasanov, The weighted Hardy operator and it is commutator
on Orlicz-Morrey spaces, Intern. J. of Pure and Appl. Math., 118,
No 2 (2018), 385-395.
[3] D. Cruz-Uribe, A. Fiorenza, J.M. Martell, C. Perez, The boundedness of
classical operators on variable Lp spaces, Ann. Acad. Scient. Fennicae,
Math., 31 (2006), 239-264.
[4] L. Diening, Maximal functions on generalized Lebesgue spaces Lp(x), Math.
Inequal. Appl., 7, No 2 (2004), 245-253.
[5] L. Diening, P. Harjulehto, P. H¨ast¨o, M. Ruˇziˇcka, Lebesgue and Sobolev
Spaces with Variable Exponents, Lecture Notes in Mathematics, SpringerVerlag, Berlin (2011).
[6] L. Diening, P. H¨ast¨o, A. Nekvinda, Open problems in variable exponent
Lebesgue and Sobolev spaces, In: ’Function Spaces, Differential Operators and Nonlinear Analysis’, Proc. of the Conference held in Milovy,
Bohemian-Moravian Uplands, May 28 - June 2, 2004, Math. Inst. Acad.
Sci. Czech Republick, Praha (2005), 38-58.
[7] L. Diening, M. R¨u´zi´cka, Calder´on-Zygmund operators on generalized
Lebesgue spaces Lp(·) and problems related to fluid dynamics, J. Reine
Angew. Math., 563 (2003), 197-220.
[8] G. Di Fazio, M.A. Ragusa, Commutators and Morrey spaces, Bollettino
U.M.I., 7, No 5-A (1991), 323- 332.
[9] J. Garcia-Cuerva, E. Harboure, C. Segovia, J.L. Torrea, Weighted norm
inequalities for commutators of strongly singular integrals, Indiana Univ.
Math. J., 40, No 4 (1991), 1397-1420.
[10] V.S. Guliyev, S.G. Samko, Maximal, potential and singular operators in
the generalized variable exponent Morrey spaces on unbounded sets, J.
Math. Sci. (N. Y.), 193, No 2 (2013), 228-248.
[11] V.S. Guliyev, J.J. Hasanov, S.G. Samko, Boundedness of the maximal, potential
and singular operators in the generalized variable exponent Morrey
spaces, Math. Scand., 107 (2010), 285-304.
[12] V.S. Guliyev, J.J. Hasanov, S.G. Samko, Boundedness of the maximal, potential
and singular integral operators in the generalized variable exponent
Morrey type spaces, J. Math. Sci., 170, No 4 (2010), 423-443.
[13] V.S. Guliyev, J.J. Hasanov, S.G. Samko, Maximal, potential and singular
operators in the local “complementary” variable exponent Morrey type
spaces, J. Math. Sci., 193, No 2 (2013), 228-248.
[14] A. Karlovich, A. Lerner, Commutators of singular integrals on generalized
Lp spaces with variable exponent, Publ. Math., 49, No 1 (2005), 111-125.
[15] V. Kokilashvili, A. Meskhi, Boundedness of maximal and singular operators
in Morrey spaces with variable exponent, Arm. J. Math. (Electronic),
1, No 1 (2008), 18-28.
[16] O. Kovacik, J. Rakosnik, On spaces Lp(x) and Wk,p(x), Czechoslovak Math.
J., 41, No 116 (1991), 592-618.
[17] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential
equations, Trans. Amer. Math. Soc., 43 (1938), 126-166.
[18] T. Mizuhara, Boundedness of some classical operators on generalized Morrey
spaces, Harmonic Analysis (S. Igari, Ed.), ICM 90 Satellite Proceedings,
Springer - Verlag, Tokyo (1991), 183-189.
[19] Y. Mizuta, T. Shimomura, Sobolev embeddings for Riesz potentials of
functions in Morrey spaces of variable exponent, J. Math. Soc. Japan, 60
(2008), 583-602.
[20] D. Lukkassen, L.-E. Persson, S. Samko, P. Wall, Weighted Hardy operators
in complementary Morrey Spaces, J. Funct. Spaces Appl., 2012;
doi:10.1155/2012/283285.
[21] D. Lukkassen, L.-E.Persson, S. Samko, P.Wall, Weighted Hardy-type inequalities
in variable exponent Morrey-type spaces, J. Funct. Spaces Appl.,
2013; doi:10.1155/2013/716029.
[22] D. Lukkassen, L.-E.Persson, N. Samko, Hardy type operators in local vanishing
Morrey spaces on fractal sets, Fract. Calc. Appl. Anal., 18, No 5
(2015), 1252-1276.
[23] J. Peetre, On the theory of Lp, spaces, J. Funct. Anal., 4 (1969), 71-87.
[24] S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent:
maximal and singular operators, Integral Transforms Spec. Funct.,
16, No 5-6 (2005), 461-482.
[25] C. Segovia, J.L. Torrea, Higher order commutators for vector-valued
Calder´on - Zygmund operators, Trans. Amer. Math. Soc., 336, No 2
(1993), 537-556.
[26] I.I. Sharapudinov, The topology of the space Lp(t)([0, 1]), Mat. Zametki,
26, No 3-4 (1979), 613-632.