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Abstract: The Saffman-Taylor instability occurs when a less viscous Stokes
fluid is displacing a more viscous one, in a rectangular Hele-Shaw cell. This
could be an useful model for the study of secondary oil recovery from a porous
medium with low-pressure reserves. In some previous papers was considered
a large number of liquid layers with constant viscosities inserted between the
initial fluids, in order to minimize this instability. We highlight some strong
contradictions related to the linear stability of this flow pattern.
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1. Introduction

We consider a Stokes flow in a 2D Hele-Shaw cell (first studied in [11]) parallel
with the plane xOy. The flow is in the positive direction of the Ox axis. The
cell gap is b, the cell length is denoted by l. The gravity effects are neglected.
The viscosity, velocity and pressure are denoted by νS ,u = (u, v, w), p. We
consider ǫ = b/l << 1 and we neglect w. The flow equations are
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px = −
12νS
b2

u, py = −
12νS
b2

v, pz = 0, ux + vy = 0, (1)

u = (1/b)

∫ b

0
u(x, y, z)dz, v = (1/b)

∫ b

0
v(x, y, z)dz,

where the lower indices x, y, z are denoting the partial derivatives. The above
equations are quite similar to the Darcy’s law for the flow in a porous medium
with the permeability (b2/12). A rigorous justification is given in [1], [13].

A sharp interface exists between two immiscible displacing fluids in a Hele-
Shaw cell. Saffman and Taylor [18] have proven the well know result: the
interface is unstable when the displacing fluid is less viscous. Moreover, the fin-
gering phenomenon appears in this case, studied in [12], [17]. A surface tension
on the interface is limiting the range of unstable disturbances. Without surface
tension, the growth rates of perturbations are always positive and become in-
finite with increasing wave numbers. These properties were obtained from the
formula (11) of [18] and have been confirmed by a large number of experiments.

The linear stability of the displacement by air of a Newtonian fluid in a
3D Hele-Shaw cell was studied in [16]. Unlike in the 2D case, the displacement
could be almost stable even if the displacing fluid is less viscous but the surface
tension on the air-fluid interface is large enough. Without surface tension, the
growth rate is bounded for increasing wavenumbers of the perturbations.

An important problem is to minimize the Saffman-Taylor instability, by
using some “intermediate“ liquids (possible with surfactant properties) inserted
between the initial displacing fluids.

An intermediate fluid with variable increasing viscosity in a middle layer
between the displacing fluids can minimize the Saffman-Taylor instability - see
the theoretical, experimental and numerical results given in [2], [8], [9], [10],
[15], [19], [20], [23]. The displacements with variable viscosity in Hele-Shaw
cells and porous media are studied in [14], [21], [22].

The three-layer model with an a priori unknown viscosity in a middle layer
between the two initial displacing fluids was first considered in [9]. An opti-
mal intermediate viscosity (which minimizes the instability) was obtained by a
numerical procedure.

The Hele-Shaw displacement with N intermediate layers (the N -layer Hele-
Shaw model) was studied in [3], [4], [5], [6]. The corresponding (positive) growth
rates become very small for N large enough, in the case of the intermediate
constant viscosities with positive jumps in the flow direction.

In this paper we show that some properties of the N -layer Hele-Shaw model
with constant intermediate viscosities could contradict the experimental and
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theoretical results. We prove that a large surface tension on the interface be-
tween the displacing fluid and the intermediate region leads us to very large
growth rates, independent of N . Moreover, the growth constants corresponding
to neighboring interfaces can have very different magnitudes. A very unstable
interface can exists (with large deformations over small time intervals), followed
by an almost stable one. The distance between two neighboring interfaces could
decrease during the displacement process. This is in contradiction with a basic
assumption used in the four cited above papers: the length of the intermediate
layers must be constant.

Our results are mainly obtained by using the boundary conditions on the
interfaces, which are based on the Laplace-Young law and are also related with
the amplitudes of the velocity perturbations.

The paper is laid out as follows. In Section 2 we describe the three-layers
Hele-Shaw model with variable intermediate viscosity, introduced in [9]. In
Section 3 we study the multi-layer model with constant intermediate viscosities
and we get the properties mentioned above. We conclude in the last section.

2. The flow model

The three-layer Hele-Shaw model with a variable intermediate viscosity was
first studied [9]. Even if this flow model is described in many papers (see [3]
and the references therein), we give here some details, for the clarity of our
exposure.

An amount of polymer solute with a variable concentration c and variable
viscosity ν is injected with the positive velocity U in a rectangular Hele-Shaw
cell saturated with a fluid with viscosity νO, during a time interval TI. The ad-
sorption, dispersion and diffusion of the solute in the equivalent porous medium
are neglected. The viscosity ν can be considered as a series of powers of c, with
constant coefficients - see [7], [8]. We consider a dilute solute and we have a
first order development of ν as a function of c. Then ν is invertible in terms of
c and from the continuity equation for the solute (which is Dc/Dt = 0) we get
Dν/Dt = 0. It follows

νt + uνx + vνy = 0. (2)

After a time interval TI, a displacing fluid with viscosity νW is injected in
the porous medium, with the same velocity U . On this way we obtain an
intermediate fluid layer with the variable viscosity ν which is moving with the
velocity U far upstream.
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Without loss of generality, the intermediate region is taken to be the interval

Ut− L < x < Ut.

We have three incompressible fluids with viscosities νW (displacing fluid), ν
(intermediate layer) and νO (displaced fluid). The flow is governed by the
Darcy’s equations (1) with viscosity µS below:

µS = µW , x < Ut− L; µS = µ, x ∈ (Ut− L,Ut);

µS = µO, x > Ut; (3)

µW = 12νW /b2; µ = 12ν/b2; µO = 12νO/b
2. (4)

In [9] was studied the linear stability of the following basic state:

u = U, v = 0; x = Ut− L, x = Ut;

Px = −µdU, Py = 0; µ = µ(x− Ut). (5)

The basic viscosity µ in the middle layer is obtained from the equation (2)
which gives us

µt + Uµx = 0. (6)

The boundary conditions on the interfaces are based on the Laplace-Young
law: the pressure jump is given by the surface tension multiplied with the
interfaces curvature. Moreover, the component u of the velocity is continuous
and the interfaces are material. The basic interfaces are straight lines, thus the
basic pressure P is continuous (but his gradient is not).

We introduce the moving reference frame x = x − Ut, τ = t. However,
we still use the notation x, t instead of x, τ . Therefore the equation (6) leads
us to µτ = 0, µ = µ(x).

The perturbations of the basic velocity, pressure, viscosity are denoted by
u′, v′, p′, µ′. The perturbation of the interface near a point x = a is denoted by
η(a, y, t) - see the equation (14) below. We insert u′, v′, p′, µ′ in the equations
(3), (6). As in [9] pag.82, formulas (2.14)-(2.16), we get the stability system

p′x = −µu′ − µ′U, p′y = −µv′, u′x + v′y = 0, (7)

µ′

t + u′µx = 0. (8)

A Fourier decomposition is used for the perturbation u′:

u′(x, y, t) = f(x)[cos(ky) + sin(ky)]eσt, k ≥ 0, (9)
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where f(x) is the amplitude, σ is the growth constant and k are the wave
numbers. From (7)-(9) we get the Fourier decompositions for the perturbations
v′, p′, µ′:

v′ = (1/k)fx[− sin(ky) + cos(ky)]eσt,

p′ = (µ/k2)fx[− cos(ky)− sin(ky)]eσt,

µ′ = (−1/σ)µxf [cos(ky) + sin(ky)]eσt. (10)

The cross derivation of the relations (7)1, (7)2 leads us to

µu′y + µ′

yU = µxv
′ + µv′x.

From (9) - (10) we get the equation of the amplitude f :

−(µfx)x + k2µf =
1

σ
Uk2fµx, ∀x /∈ {−L, 0}. (11)

Outside the intermediate region we have

−fxx + k2f = 0, x /∈ (−L, 0). (12)

The perturbations decay to zero in the far field, thus

f(x) = f(−L)ek(x+L), ∀x ≤ −L;

f(x) = f(0)e−kx, ∀x ≥ 0. (13)

We suppose that at x = a exist a viscosity jump [µ+(a) − µ−(a)] and
a surface tension T (a), where +,− are the right and left limit values. The
amplitude f is continuous at x = a but a jump of fx is possible. The perturbed
interface near a is denoted by η(a, y, t). In the first approximation we have
ηt = u, therefore we can consider

η(a, y, t) = (1/σ)f(a)[cos(ky) + sin(ky)]eσt. (14)

The limit values p+(a), p−(a), are obtained by using P (a), the Taylor
first order expansion of P near a and the expression (10)2 of p′ in a. We have
P+,−
x (a) = −µ+,−(a)U , then we get

p+(a) = P+(a) + P+
x (a)η + p′+(a) = P+(a)

−µ+(a){
Uf(a)

σ
+

f+
x (a)

k2
}[cos(ky) + sin(ky)]eσt, (15)
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p−(a) = P−(a) + P−

x (a)η + p′−(a) = P−(a)

−µ−(a){
Uf(a)

σ
+

f−

x (a)

k2
}[cos(ky) + sin(ky)]eσt. (16)

The Laplace-Young law is

p+(a)− p−(a) = T (a)ηyy, (17)

where T (a) is the surface tension acting in the point a and ηyy is the approxi-
mate value of the curvature of the perturbed interface.

We use the ”ad hoc“ notation Fa = F (a). P is continuous, thus from (15)
- (17) it follows

−µ+
a [

Ufa
σ

+
f+
x (a)

k2
] + µ−

a [
Ufa
σ

+
f−

x (a)

k2
] = −

Ta

σ
fak

2,

µ−

a f
−

x (a)− µ+
a f

+
x (a) =

k2Uf [µ+
a − µ−

a ]− k4Ta

σ
fa. (18)

The linear stability system of the basic state (5) is given by (11) - (13) with
the boundary conditions below

µ−

Lf
−

x (−L)− µ+
Lf

+
x (−L) =

k2Uf [µ+
L − µ−

L ]− k4TL

σ
fL. (19)

µ−

0 f
−

x (0)− µ+
0 f

+
x (0) =

k2Uf [µ+
0 − µ−

0 ]− k4T0

σ
f0. (20)

We suppose L = a = 0. Then from (12), (13), (18) we can recover the
Saffman - Taylor growth constant formula. Indeed, we have

−fxx + k2f = 0,

f(x) = f(a)ek(x−a), x ≤ a; f(x) = f(a)e−k(x−a), x ≥ a,

and the relation (18) is giving the following results

σST =
kU(µO − µW )− T (a)k3

µO + µW

; (21)

µO > µW and k2 < U(µO − µW )/T (a) ⇒ σST > 0; (22)

T (a) = 0 ⇒ lim
k→∞

σST = ∞. (23)

Remark 1. Consider a constant intermediate viscosity µ1, such that

µW < µ1 < µO.
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Thus the stability system is given by the equation (12) and

−fxx + k2f = 0, x ∈ (−L, 0), (24)

f(x) = f(−L)ek(x+L), ∀x ≤ −L; f(x) = f(0)e−kx, ∀x ≥ 0 (25)

with boundary conditions (19)-(20).
Remark 2. We can inject several polymer-solutes with constant concen-

trations ci during the time intervals Ti, 1 ≤ i ≤ N . We divide the middle
region in N small intervals (layers) separated by the interfaces xi such that

x0 = 0 > x1 > x2 > ... > xN = −L. (26)

On each small interval we have the constant viscosities µi such that

µO = µ0 > µ1 > µ2 > ... > µN−1 > µN = µW (27)

and the amplitude equations

−µi(fi)xx + µik
2fi = 0. (28)

For a = xi, 0 ≤ i ≤ N we have the boundary conditions (18). This is the
multi-layer Hele-Shaw model, studied in [3], [4], [5] [6]. The amount of fluid
between two neighboring interfaces and the length of each layer are constant,
due to the mass conservation principle.

3. The linear stability analysis

The main point is to study the possible solutions of the equation −fxx+k2f = 0.

i) Like in [3], [6], the solution of (24) is f(x) = Aekx + Be−kx, where A,B
are constant. The perturbations u′ must be ”small“, otherwise we exceed the
frame of the linear stability. We must impose the conditions

max
k

|f(x)| < ∞; lim
k→∞

|f(x)| < ∞. (29)

Therefore, in fact we need B = 0 and the amplitude is

f(x) = Aekx. (30)

We use (25) and (30), thus we get

f−

x (−L) = kf(−L), f+
x (0) = −kf(−L),

f+
x (−L) = kf(−L) = f−

x (0).
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Therefore the possible eigenvalues of the problem (19)-(20) and (24)-(25) are,
say,

σL =
kU(µ1 − µW )− k3T (−L)

µW − µ1
,

σO =
kU(µO − µ1)− k3T (0)

µO + µ1
. (31)

We recall µW < µ1, then from the above relation we obtain:

T (−L) > 0, T (0) > 0, k → ∞ ⇒ σL → ∞, σO → −∞. (32)

T (−L) = 0, T (0) > 0, k → ∞ ⇒ σL ≤ 0, σO → −∞. (33)

The instability appears even if two surface tensions exist. Moreover, if one of
the surface tensions is missing, the growth rates are bounded with increasing
k. These properties are in contradiction with the experimental data and with
the Saffman-Taylor stability criterion.

If T (−L) > 0, T (0) > 0 then the growth constant σL is strongly increasing
with increasing k. Then the perturbations u′ of the first interface, even for
small time intervals, become very large. As the perturbations of the second
interface (governed by σO) are decreasing for large k, it is possible to have a
collision between the interfaces. In this case it is not clear if the length of the
intermediate region can be constant.

Moreover, any basic solution is subject to perturbations, which can be given
(for example) by an unexpected vibration of the porous medium or of the Hele-
Shaw cell in the laboratory. We proved that such a perturbation can reduce the
distance between the initial interfaces in a very short time interval. From this
point of view, even the existence of a basic solution with constant intermediate
viscosity seems be not so evident.

The above results question the physical validity of the model with an in-
termediate liquid of constant viscosity. In the above analysis we used only the
boundary conditions (18). The amplitude (30) was not considered in [3], [4],
[5], [6].

If the intermediate viscosity is not constant, then we have not the solution
(30) for the amplitudes. The eigenvalues (31) cannot be obtained. Therefore
the model of Gorell and Homsy is useful when the intermediate liquid has a
variable viscosity and f is a priori unknown (and dependends on σ).

ii) For the N -layers model, in each inteval (xi−1, xi) we use the amplitudes

fi(x) = Aie
kx.
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On each interface a = xi, the possible eigenvalues are obtained from the bound-
ary conditions

σa =
k2Uf [µ+(a)− µ−(a)]− k4T (a)

µ−(a)f−

x (a)− µ+(a)f+
x (a)

f(a). (34)

In the points a = −L, a = 0 we obtain again the relations (31). Therefore
the first interface (with the displacing fluid) could be much more unstable,
compared to the last interface (with the displaced fluid). All the results obtained
in the previous point i) are still valid.

4. Conclusions

The interface between two Stokes immiscible fluids in a rectangular Hele-Shaw
cell is unstable when the displacing fluid is less viscous. A surface tension on
the interface is limiting the range of disturbances which are unstable. If the
surface tension is missing, then the growth rates become infinite with increasing
wave numbers - see (21)-(23).

An intermediate fluid with a variable viscosity between the displacing fluids
can minimize the Saffman-Taylor instability - see [3], [9] and the references
therein.

The multi-layer Hele-Shaw model, consisting of N intermediate fluids with
constant viscosities was studied in some previous papers, where arbitrary small
(positive) growth rates were obtained, if N is large enough. Therefore is seems
that this model is giving an important improvement of the flow stability.

We show that the multi-layer Hele-Shaw model can not supress the Saffman-
Taylor instability. When the viscosity-jumps are positive in the flow direction,
we get growth rates which becomes infinite with increasing wave numbers. The
main results of our linear stability analysis are given by the formulas (31)-(33):

1) Large surface tensions give instability.

2) T (−L) = 0 ⇒ σL ≤ 0.

3) An unstable interface can be followed by a stable one.

The properties 1) - 2) are contradicting the experimental data and the
evident consequences of the Saffman-Taylor formula. Moreover, the considered
model can not supress the Saffman-Taylor instability. In fact, the displacement
described by this model can be even more unstable, compared with the Saffman-
Taylor case. The property 3) is contradicting the mass conservation principle.
Moreover, it is not clear if the distance D between two neighboring interfaces
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can remain constant during the displacement process. On the contrary, D could
decrease very quickly over time

Our conclusion is: the multi-layer Hele-Shaw model with constant interme-
diate viscosities does not agree with the known theoretical and experimental
results. Moreover, it cannot be used to minimize the Saffman-Taylor instability.
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