International Journal of Applied Mathematics

Volume 33 No. 4 2020, 609-618

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v33i4.6

SECOND HANKEL DETERMINANT FOR A CLASS OF ANALYTIC FUNCTIONS DEFINED BY RUSCHEWEYH DERIVATIVE

Jae Ho Choi

Department of Mathematics Education Daegu National University of Education 219 Jungangdaero, Namgu, Daegu 42411, KOREA

Abstract: The main object of the present paper is to investigate the upper bound of the second Hankel determinant $|a_2a_4 - a_3^2|$ for the analytic functions defined by Ruscheweyh derivative. Furthermore, several basic properties such as inclusion, Hadamard product are also considered.

AMS Subject Classification: 30C45, 30C50

Key Words: analytic functions; Hadamard product; Hankel determinant; Ruscheweyh derivative

1. Introduction and definitions

Let \mathcal{A} denote the class of functions f(z) of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \tag{1}$$

which are analytic in the open unit disk $\mathbb{U} = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. Also let \mathcal{S} , $\mathcal{S}^*(\beta)$ ($0 \le \beta < 1$) and $\mathcal{K}(\beta)$ ($0 \le \beta < 1$) denote the subclasses of \mathcal{A} consisting of functions which are *univalent*, starlike of order β and convex of order β functions in \mathbb{U} (cf. [6], [20]). In particular, $\mathcal{S}^*(0) = \mathcal{S}$ and $\mathcal{K}(0) = \mathcal{K}$ are the familiar classes of starlike and convex functions in \mathbb{U} , respectively.

Received: March 3, 2020 © 2020 Academic Publications

In 1976, Noonan and Thomas [17] defined the qth Hankel determinant of f(z) for $q \ge 1$ and $n \ge 1$ by

$$H_q(n) = \begin{vmatrix} a_n & a_{n+1} & \cdots & a_{n+q-1} \\ a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\ \vdots & \vdots & \vdots & \vdots \\ a_n & a_{n+1} & \cdots & a_{n+q-1} \end{vmatrix}.$$

This Hankel determinant is useful and has also been considered by several authors. For example, Noor in [18] determined the rate of growth of $H_q(n)$ as $n \to \infty$ for functions f given by (1) with bounded boundary. Ehrenborg [5] studied the Hankel determinant of exponential polynomials. The Hankel transform of an integer sequence was defined and some of its properties were discussed by Layman [10]. It is well known ([4]) that for $f \in \mathcal{S}$ and given by (1) the sharp inequality $|a_3 - a_2^2| \le 1$ holds. This corresponds to the Hankel determinant with q = 2 and n = 1. After that, Fekete-Szegö further generalized the estimate $|a_3 - \mu a_2^2|$ with real μ and $f \in \mathcal{S}$. For results related to the functional, see [3], [7], [9], [14] and [19]. Here we consider the second Hankel determinant in the case of q = 2 and n = 2, namely,

$$H_2(2) = \begin{vmatrix} a_2 & a_3 \\ a_3 & a_4 \end{vmatrix} = a_2 a_4 - a_3^2. \tag{2}$$

In particular, sharp bounds on $H_2(2)$ were obtained by several authors of articles [8], [15]-[16], [23] and [25] for different subclasses of univalent functions.

For the functions $f, g \in \mathcal{A}$ and given by the series

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$
 and $g(z) = z + \sum_{k=2}^{\infty} b_k z^k$ $(z \in \mathbb{U}),$

we define the $Hadamard\ product\ (or\ convolution)$ of f and g by

$$(f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k = (g * f)(z)$$
 $(z \in \mathbb{U}).$

Making use of the Hadamard product, Carlson-Shaffer [2] defined the linear operator $\mathcal{L}(a,c): \mathcal{A} \to \mathcal{A}$ by

$$\mathcal{L}(a,c)f(z) = \Phi(a,c;z) * f(z) \qquad (f \in \mathcal{A}), \tag{3}$$

where

$$\Phi(a, c; z) = \sum_{k=0}^{\infty} \frac{(a)_k}{(c)_k} z^{k+1} \qquad (z \in \mathbb{U}; c \notin \mathbb{Z}_0^- := \{0, -1, -2, \dots\})$$
 (4)

and $(\lambda)_k$ is the Pochhammer symbol defined, in terms of the Gamma function, by

$$(\lambda)_k = \frac{\Gamma(\lambda+k)}{\Gamma(\lambda)}$$

$$= \begin{cases} 1 & (k=0) \\ \lambda(\lambda+1)\cdots(\lambda+k-1) & (k \in \mathbb{N} := \{1,2,3,\cdots\}). \end{cases}$$

The Carlson-Shaffer operator $\mathcal{L}(a,c)$ maps \mathcal{A} onto itself and $\mathcal{L}(c,a)$ is the inverse of $\mathcal{L}(a,c)$, provided that $a \notin \mathbb{Z}_0^-$ (see also [15], [24]). Moreover, it can be readily verified from (3) and (4) that

$$\mathcal{L}(a,b)\mathcal{L}(c,d)f = \mathcal{L}(c,d)\mathcal{L}(a,b)f \qquad (b,d \notin \mathbb{Z}_0^-; f \in \mathcal{A})$$
 (5)

and

$$\mathcal{L}(a,b)\mathcal{L}(b,c)f = \mathcal{L}(a,c)f \qquad (b,c \notin \mathbb{Z}_0^-; f \in \mathcal{A}). \tag{6}$$

In [21] Ruscheweyh introduced the operator $D^{\gamma}: \mathcal{A} \to \mathcal{A}$ defined by Hadamard product:

$$D^{\gamma}f(z) = \frac{z}{(1-z)^{\gamma+1}} * f(z) = z + \sum_{k=2}^{\infty} \frac{\Gamma(\gamma+k)}{\Gamma(\gamma+1)(k-1)!} a_k z^k$$
$$(\gamma \ge -1; z \in \mathbb{U}; f \in \mathcal{A}), \tag{7}$$

which implies that

$$D^{n}f(z) = \frac{z(z^{n-1}f(z))^{(n)}}{n!} \qquad (n \in \mathbb{N}_{0} := \mathbb{N} \cup \{0\}).$$

Note that $D^0 f(z) = f(z)$, $D^1 f(z) = z f'(z)$ and

$$D^{\gamma} f(z) = \mathcal{L}(\gamma + 1, 1) f(z) \qquad (z \in \mathbb{U}). \tag{8}$$

A function $f \in A$ is said to be in the class $\mathcal{R}_{\gamma}(\alpha, \rho)$ $(\gamma \geq -1, |\alpha| < \pi/2, 0 \leq \rho < 1)$ if it satisfies the inequality

$$\operatorname{Re}\left\{e^{i\alpha}\frac{D^{\gamma}f(z)}{z}\right\} > \rho\cos\alpha \qquad (z \in \mathbb{U}). \tag{9}$$

Write

$$\mathcal{R}_{\gamma}(0,\rho) = \mathcal{R}_{\gamma}(\rho).$$

As is usually the case, we let \mathcal{P} be the family of all functions p analytic in \mathbb{U} for which $\mathrm{Re}(p(z))>0$ and

$$p(z) = 1 + c_1 z + c_2 z^2 + \cdots$$
 $(z \in \mathbb{U}).$ (10)

It follows from (9) that

$$f \in \mathcal{R}_{\gamma}(\alpha, \rho) \Leftrightarrow e^{i\alpha} \frac{D^{\gamma} f(z)}{z} = [(1 - \rho)p(z) + \rho] \cos \alpha + i \sin \alpha,$$
 (11)

where α is real, $|\alpha| < \pi/2$ and $p(z) \in \mathcal{P}$.

We note that

$$\mathcal{R}_0(\alpha, \rho) = \left\{ f \in \mathcal{A} \mid \operatorname{Re} \left\{ e^{i\alpha} \frac{f(z)}{z} \right\} > \rho \cos \alpha \right\},$$

$$\mathcal{R}_1(\alpha, \rho) = \left\{ f \in \mathcal{A} \mid \operatorname{Re} \left\{ e^{i\alpha} f'(z) \right\} > \rho \cos \alpha \right\},$$

and the class $\mathcal{R}_1(0,0) = \mathcal{R}$ has been studied in [13].

The object of the present paper is to determine the functional $|a_2a_4 - a_3^2|$ for the function $f \in \mathcal{R}_{\gamma}(\alpha, \rho)$. We also obtain some basic properties of the class $\mathcal{R}_{\gamma}(\alpha, \rho)$. Our investigation includes a recent result of Janteng et al. [8].

2. Main results

In order to prove our results, we need the following lammas.

Lemma 1. (see [4]) Let the function $p \in \mathcal{P}$ and be given by the power series (10). Then $|c_k| \leq 2$ for each $k \in \mathbb{N}$.

Lemma 2. (see [11] and [12]) Let the function $p \in \mathcal{P}$ and be given by the power series (10). Then

$$2c_2 = c_1^2 + x(4 - c_1^2) (12)$$

for some x with $|x| \leq 1$ and

$$4c_3 = c_1^3 + 2(4 - c_1^2)c_1x - c_1(4 - c_1^2)x^2 + 2(4 - c_1^2)(1 - |x|^2)z$$
 (13)

for some z with $|z| \leq 1$.

Lemma 3. (see [22]) Let f and g be starlike of order 1/2. Then, for each function F(z), satisfying $Re(F(z)) > \beta$ ($0 \le \beta < 1$), one has

$$\operatorname{Re}\left(\frac{f(z)*F(z)g(z)}{f(z)*g(z)}\right) > \beta$$
 $(z \in \mathbb{U}).$

We begin by proving the following theorem.

Theorem 1. Let $-\pi/2 < \alpha < \pi/2$, $0 \le \rho < 1$ and $\gamma \ge 0$. Suppose that the function f given by (1) be in the class $\mathcal{R}_{\gamma}(\alpha, \rho)$. Then

$$\left| a_{2}a_{4} - a_{3}^{2} \right| \leq \begin{cases} \frac{16(1-\rho)^{2} \cos^{2} \alpha}{(\gamma+1)^{2}(\gamma+2)^{2}} & (\gamma \leq 6) \\ \frac{(1-\rho)^{2}(17\gamma^{2} + 36\gamma + 36) \cos^{2} \alpha}{\gamma(\gamma+1)^{2}(\gamma+2)^{2}(\gamma+3)} & (\gamma \geq 6). \end{cases}$$
(14)

The estimate (14) is sharp.

Proof. Let $f \in \mathcal{R}_{\gamma}(\alpha, \rho)$. Then, from (11) we have

$$e^{i\alpha} \frac{D^{\gamma} f(z)}{z} = [(1 - \rho)p(z) + \rho] \cos \alpha + \sin \alpha \qquad (z \in \mathbb{U}), \tag{15}$$

where $p \in \mathcal{P}$ and is given by (10). By using the series expansion of $D^{\gamma}f(z)$ and p(z) as in (7) and (10), equating the coefficients in (15) yields

$$e^{i\alpha}(\gamma+1)a_2 = (1-\rho)c_1\cos\alpha,$$

$$e^{i\alpha}\frac{(\gamma+1)(\gamma+2)}{2}a_3 = (1-\rho)c_2\cos\alpha,$$

$$e^{i\alpha}\frac{(\gamma+1)(\gamma+2)(\gamma+3)}{6}a_4 = (1-\rho)c_3\cos\alpha.$$
(16)

Therefore, from (16) we have

$$\left| a_2 a_4 - a_3^2 \right| = \frac{2(1-\rho)^2 \cos^2 \alpha}{(\gamma+1)^2 (\gamma+2)} \left| \frac{3c_1 c_3}{\gamma+3} - \frac{2c_2^2}{\gamma+2} \right|. \tag{17}$$

Since the function p(z) and $p(e^{i\theta}z)$ ($\theta \in \mathbb{R}$) are members of the class \mathcal{P} simultaneously, we assume that without loss of generality that $c_1 > 0$. For convenience of notation, we take $c_1 = c$ ($c \in [0, 2]$).

Using (12) and (13) in (17), we obtain

$$|a_2 a_4 - a_3^2|$$

$$= \frac{(1-\rho)^2 \cos^2 \alpha}{2(\gamma+1)^2(\gamma+2)} \left| \frac{3c}{\gamma+3} \right| \left\{ c^3 + 2(4-c^2)cx - c(4-c^2)x^2 \right\}$$

$$+ 2(4 - c^{2})(1 - |x|^{2})z\} - \frac{2\{c^{4} + 2c^{2}(4 - c^{2})x + x^{2}(4 - c^{2})^{2}\}}{\gamma + 2}$$

$$= \frac{(1 - \rho)^{2}\cos^{2}\alpha}{2(\gamma + 1)^{2}(\gamma + 2)} \left| \left(\frac{3}{\gamma + 3} - \frac{2}{\gamma + 2} \right)c^{4} + \left(\frac{6c(4 - c^{2})c^{2}}{\gamma + 3} \right) \right|$$

$$- \frac{4(4 - c^{2})c^{2}}{\gamma + 2} x - \left(\frac{3c^{2}(4 - c^{2})}{\gamma + 3} + \frac{2(4 - c^{2})^{2}}{\gamma + 2} \right)x^{2}$$

$$+ \frac{6c(4 - c^{2})(1 - |x|^{2})z}{\gamma + 3} \right|$$

$$= \frac{(1 - \rho)^{2}\cos^{2}\alpha}{2(\gamma + 1)^{2}(\gamma + 2)} \left| \frac{\gamma c^{4}}{(\gamma + 2)(\gamma + 3)} + \frac{2\gamma(4 - c^{2})c^{2}}{(\gamma + 2)(\gamma + 3)}x - \frac{(4 - c^{2})(\gamma c^{2} + 8\gamma + 24)}{(\gamma + 2)(\gamma + 3)}x^{2} + \frac{6c(4 - c^{2})(1 - |x|^{2})z}{\gamma + 3} \right| .$$

An application of triangle inequality and replacement of |x| by μ give

$$|a_{2}a_{4} - a_{3}^{2}|$$

$$\leq \frac{(1-\rho)^{2}\cos^{2}\alpha}{2(\gamma+1)^{2}(\gamma+2)} \left[\frac{\gamma c^{4}}{(\gamma+2)(\gamma+3)} + \frac{2\gamma c^{2}(4-c^{2})}{(\gamma+2)(\gamma+3)}\mu + \frac{(4-c^{2})(\gamma c^{2}+8\gamma+24)}{(\gamma+2)(\gamma+3)}\mu^{2} + \frac{6c(4-c^{2})}{\gamma+3} - \frac{6c(4-c^{2})}{\gamma+3}\mu^{2} \right]$$

$$= \frac{(1-\rho)^{2}\cos^{2}\alpha}{2(\gamma+1)^{2}(\gamma+2)} \left[\frac{\gamma c^{4}}{(\gamma+2)(\gamma+3)} + \frac{6c(4-c^{2})}{\gamma+3} + \frac{6c(4-c^{2})}{\gamma+3} + \frac{2\gamma c^{2}(4-c^{2})}{(\gamma+2)(\gamma+3)}\mu + \frac{(4-c^{2})(c-2)(\gamma c-4\gamma-12)}{(\gamma+2)(\gamma+3)}\mu^{2} \right]$$

$$:= F(c,\mu),$$

$$(18)$$

where $0 \le c \le 2$ and $0 \le \mu \le 1$.

We now maximize the function $F(c, \mu)$ on the closed square $[0,2] \times [0,1]$. Since

$$\frac{\partial F}{\partial \mu} = \frac{(1-\rho)^2 \cos^2 \alpha}{2(\gamma+1)^2(\gamma+2)} \left[\frac{2\gamma c^2(4-c^2)}{(\gamma+2)(\gamma+3)} + \frac{2(4-c^2)(c-2)(\gamma c-4\gamma-12)}{(\gamma+2)(\gamma+3)} \mu \right],$$

c-2 < 0 and $\gamma c - 4\gamma - 12 < 0$, we have $\partial F/\partial \mu > 0$ for 0 < c < 2 and $0 < \mu < 1$. Thus $F(c,\mu)$ cannot have a maximum in the interior of the closed square $[0,2] \times [0,1]$. Moreover, for fixed $c \in [0,2]$,

$$\max_{0 \le \mu \le 1} F(c, \mu) = F(c, 1) = G(c).$$

One can obtain that

$$|a_2a_4 - a_3^2| \le G(c),$$

where

$$G(c) = \frac{(1-\rho)^2 \cos^2 \alpha}{2(\gamma+1)^2(\gamma+2)} \left[\frac{\gamma c^4}{(\gamma+2)(\gamma+3)} + \frac{6c(4-c^2)}{\gamma+3} + \frac{2\gamma c^2(4-c^2)}{(\gamma+2)(\gamma+3)} + \frac{(4-c^2)(c-2)(\gamma c-4\gamma-12)}{(\gamma+2)(\gamma+3)} \right].$$

Since

$$G'(c) = \frac{-4c(1-\rho)^2 \cos^2 \alpha}{(\gamma+1)^2(\gamma+2)^2(\gamma+3)} \left\{ \gamma c^2 - \gamma + 6 \right\},\,$$

we have to consider following two cases:

Case 1. For $\gamma \leq 6$, G'(c) < 0 for 0 < c < 2 and has real critical point at c = 0. Also G(c) > G(2). Therefore, $\max_{0 \leq c \leq 2}$ occurs at c = 0. Thus the upper bound of (18) corresponds to $\mu = 1$ and c = 0. Hence, we get

$$\left| a_2 a_4 - a_3^2 \right| \le \frac{16(1-\rho)^2 \cos^2 \alpha}{(\gamma+1)^2 (\gamma+2)^2}.$$

Case 2. Let $\gamma \geq 6$. After necessary calculations, it is obtain that

$$G'(0) = 0$$
 and $G'(\sqrt{1 - 6/\gamma}) = 0$.

Since

$$G''(0) > 0$$
 and $G''\left(\sqrt{1 - 6/\gamma}\right) < 0$,

G(c) has a maximum at $c = \sqrt{1 - 6/\gamma}$. Hence, we have

$$\left| a_2 a_4 - a_3^2 \right| \le \frac{(1-\rho)^2 (17\gamma^2 + 36\gamma + 36)\cos^2\alpha}{\gamma(\gamma+1)^2(\gamma+2)^2(\gamma+3)}.$$

Equality holds for the function

$$f(z) = \Phi(1, \gamma + 1; z) * e^{-i\alpha} \left[z \left(\frac{1 + (1 - 2\rho)z^2}{1 - z^2} \cos \alpha + i \sin \alpha \right) \right].$$

This completes the proof of Theorem 1.

Putting $\alpha = 0$ in Theorem 1, we get the following consequence.

Corollary 1. If the function f(z) given by (1) be in the class $\mathcal{R}_{\gamma}(\rho)$, then

$$|a_2 a_4 - a_3^2| \le \begin{cases} \frac{16(1-\rho)^2}{(\gamma+1)^2(\gamma+2)^2} & (\gamma \le 6) \\ \frac{(1-\rho)^2(17\gamma^2 + 36\gamma + 36)}{\gamma(\gamma+1)^2(\gamma+2)^2(\gamma+3)} & (\gamma \ge 6). \end{cases}$$

Equality holds for the function

$$f(z) = \Phi(1, \gamma + 1; z) * \frac{z(1 + (1 - 2\rho)z^2)}{1 - z^2}.$$

Remark. Taking $\gamma = 1$, $\alpha = 0$ and $\rho = 0$ in Theorem 1, we get a recent result due to Janteng et al. [8].

Theorem 2. Suppose that $-\pi/2 < \alpha < \pi/2$, $0 \le \rho < 1$ and $\gamma \ge 0$. Then

$$\mathcal{R}_{\gamma+1}(\alpha,\rho) \subset \mathcal{R}_{\gamma}(\alpha,\rho). \tag{19}$$

Proof. Let $f \in \mathcal{R}_{\gamma+1}(\alpha, \rho)$. By using (5), (6) and (8), we have

$$\begin{split} D^{\gamma}f(z) &= \mathcal{L}(\gamma+1,1)f(z) \\ &= \mathcal{L}(\gamma+2,1)\mathcal{L}(1,\gamma+2)\mathcal{L}(\gamma+1,1)f(z) \\ &= \mathcal{L}(\gamma+1,\gamma+2)D^{\gamma+1}f(z) \\ &= \Phi(\gamma+1,\gamma+2;z)*D^{\gamma+1}f(z), \end{split}$$

where the function Φ is defined by (4). Therefore,

$$e^{i\alpha} \frac{D^{\gamma} f(z)}{z} = \frac{\Phi(\gamma + 1, \gamma + 2; z) * \left(e^{i\alpha} D^{\gamma + 1} f(z)/z\right) \cdot z}{\Phi(\gamma + 1, \gamma + 2; z) * z}$$
$$= \frac{f(z) * F(z)g(z)}{f(z) * g(z)},$$

where $f(z) = \Phi(\gamma + 1, \gamma + 2; z)$, g(z) = z and $F(z) = e^{i\alpha}D^{\gamma+1}f(z)/z$. We note that $g \in \mathcal{S}^*(1/2)$ and $\text{Re}(F(z)) > \rho \cos \alpha$. Moreover, by using a result of Bernardi [1], we observe that $\Phi(\gamma + 1, \gamma + 2; z) \in \mathcal{S}^*(1/2)$. Therefore, by applying Lemma 3,

$$\operatorname{Re}\left(e^{i\alpha}\frac{D^{\gamma}f(z)}{z}\right)>\rho\cos\alpha\qquad \left(-\frac{\pi}{2}<\alpha<\frac{\pi}{2};0\leq\rho<1;z\in\mathbb{U}\right).$$

Hence, $f \in \mathcal{R}_{\gamma}(\alpha, \rho)$, which completes the proof of Theorem 2.

Theorem 3. Let $-\pi/2 < \alpha < \pi/2$, $0 \le \rho < 1$ and $\gamma \ge 0$. Suppose that $f \in \mathcal{S}^*(1/2)$ and $g \in \mathcal{R}_{\gamma}(\alpha, \rho)$, then the Hadamard product

$$(f * g)(z) \in \mathcal{R}_{\gamma}(\alpha, \rho) \qquad (z \in \mathbb{U}).$$
 (20)

Proof. Since the Hadamard product is associative and commutative, we obtain

$$D^{\gamma}(f * g)(z) = f(z) * D^{\gamma}g(z) \qquad (z \in \mathbb{U}).$$

Therefore, we get

$$e^{i\alpha} \frac{D^{\gamma}(f * g)(z)}{z} = \frac{f(z) * \left(e^{i\alpha}D^{\gamma}g(z)/z\right) \cdot z}{f(z) * z}.$$

Thus, by applying Lemma 3, we observe that

$$\operatorname{Re}\left(e^{i\alpha}\frac{D^{\gamma}(f\ast g)(z)}{z}\right)>\rho\cos\alpha.$$

Hence, $(f * g)(z) \in \mathcal{R}_{\gamma}(\alpha, \rho)$, and the proof of Theorem 3 is complete.

Acknowledgements

This work was supported by Daegu National University of Education Research grant in 2019.

References

- [1] S.D. Bernardi, Convex and starlike univalent functions, *Trans. Amer. Math. Soc.*, **135** (1969), 429-446.
- [2] B.C. Carlson and D.B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737-745.
- [3] J.H. Choi, Y.C. Kim and T. Sugawa, A general approach to the Feketo-Szegö problem, J. Math. Soc. Japan, 59, No 3 (2007), 707-727.
- [4] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1983.

[5] R. Ehrenborg, The Hankel determinant of exponantial polynomials, *American Mathematical Monthly*, **107** (2000), 557-560.

- [6] M. Elumalai, Sufficient conditions for convex functions of order γ , Int. J. Appl. Math., **31**, No 4 (2018), 587-595; DOI: 10.12732/ijam.v31i4.5.
- [7] T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Int. J. Math. Anal., 4 (2010), 2573-2585.
- [8] A. Janteng, S.A. Halim and M. Darus, Coefficient inequality for a function whose derivative has positive real part, J. Ineq. Pure and Appl. Math., 7, No 2 (2006), 1-5.
- [9] W. Koepf, On the Feketo-Szegö problem for close-to-convex functions, *Proc. Amer. Math. Soc.*, **101** (1987), 89-95.
- [10] J.W. Layman, The Hankel transform and some of its properties, *J. of Integer Sequences*, 4 (2001), 1-11.
- [11] R.J. Libera and E.J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, *Proc. Amer. Math. Soc.*, **85** (1982), 225-230.
- [12] R.J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in \mathcal{P} , *Proc. Amer. Math. Soc.*, 87 (1983), 251-257.
- [13] T.H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962), 532-537.
- [14] W. Ma and D. Minda, An Integral geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, 45 (1991), 89-97.
- [15] A.K. Mishra and P. Gochhayat, Second Hankel determinant for a class of analytic functions defined by fractional derivative, *Int. J. Math. Math. Sci.* 2008 (2008), 1-10.
- [16] A. Mohammed and M. Darus, Second Hankel determinant for a class of analytic functions defined by linear operator, *Tamkang J. Math.*, 43, No 3 (2012), 455-462.
- [17] J.W. Noonan and D.K. Thomas, On the second Hankel determinant of a really mean p-valent functions, *Trans. Amer. Math. Soc.* 223, No 2 (1976), 337-346.

- [18] K.I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, *Rev. Roum. Math. Pures et Appl.*, **28**, No 8 (1983), 731-739.
- [19] C. Ramachandran, L. Vanitha and S. Owa, Certain bounds for unified convex functions of q-difference operator, *Int. J. Appl. Math.* **29**, No 2 (2016), 243-261; doi: 10.12732/ijam.v29i2.8.
- [20] M. I. S. Robertson, On the theory of univalent functions, Annals of Mathematics, 37 (1936), 374-408.
- [21] S. Ruscheweyh, New criteria for univalent functions, *Proc. Amer. Math. Soc.*, **49** (1975), 109-115.
- [22] S. Ruscheweyh and T. Sheil-Small, Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture, *Comment. Math. Helv.*, **48** (1973), 119-135.
- [23] C. Selvaraj and T.R.K. Kumar, Second Hankel determinant for certain classes of analytic functions, Int. J. Appl. Math. 28, No 1 (2015), 37-50; doi: 10.12732/ijam.v28i1.4.
- [24] H.M. Srivastava and S. Owa, Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore-New Jersey-London-Hong Kong, 1992.
- [25] T. Yavuz, Second Hankel determinant problem for a certain subclass of univalent functions, *Int. J. Math. Anal.*, **9**, No 10 (2015), 493-498.