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Abstract: The main object of the present paper is to investigate the upper
bound of the second Hankel determinant |azas — a3| for the analytic functions
defined by Ruscheweyh derivative. Furthermore, several basic properties such
as inclusion, Hadamard product are also considered.
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1. Introduction and definitions

Let A denote the class of functions f(z) of the form
f(2) :Z—i—Zakzk, (1)
k=2

which are analytic in the open unit disk U = {z : z € C and |z| < 1}. Also
let S, §*(B) (0 < B < 1) and K£(5) (0 < S < 1) denote the subclasses of A
consisting of functions which are univalent, starlike of order 5 and convex of
order ( functions in U (cf. [6], [20]). In particular, $*(0) = S and K£(0) = K
are the familiar classes of starlike and convex functions in U, respectively.
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In 1976, Noonan and Thomas [17] defined the gth Hankel determinant of
f(z) for¢g>1andn > 1 by

An  Gpy1 - Opig—1
an+1 QAny2 " Qn+q
Ap  Gpy1 - OGpig—1

This Hankel determinant is useful and has also been considered by several
authors. For example, Noor in [18] determined the rate of growth of Hy(n)
as n — oo for functions f given by (1) with bounded boundary. Ehrenborg
[5] studied the Hankel determinant of exponential polynomials. The Hankel
transform of an integer sequence was defined and some of its properties were
discussed by Layman [10]. It is well known ([4]) that for f € S and given by
(1) the sharp inequality |az — a3| < 1 holds. This corresponds to the Hankel
determinant with ¢ = 2 and n = 1. After that, Fekete-Szegd further generalized
the estimate |az — pa3| with real u and f € S. For results related to the
functional, see [3], [7], [9], [14] and [19]. Here we consider the second Hankel
determinant in the case of ¢ = 2 and n = 2, namely,

3 = agay — a2, (2)

In particular, sharp bounds on Hs(2) were obtained by several authors of articles
[8], [15]-[16], [23] and [25] for different subclasses of univalent functions.

For the functions f,g € A and given by the series
[e.e]
z):z—l—Zakzk and g¢(z —z—l—Zbkz (z € 1),

we define the Hadamard product (or convolution) of f and g by

(f*9)(z —ZJrZakka (9 f)z)  (z€0).

Making use of the Hadamard product, Carlson-Shaffer [2] defined the linear
operator L(a,c) : A — A by

L(a,c)f(z) = ®(a,c2) % f(z)  (f €A, 3)

where
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(a,c;2) Z(a— (2€U;c¢Zy :={0,—-1,-2,---}) (4)

C
k=0

and (\)g is the Pochhammer symbol defined, in terms of the Gamma function,
by

o = 040
1 (k = 0)
{/\(/\+1)-~-(/\+k:—1) (ke N:={1,2,3,--}).

The Carlson-Shaffer operator £(a, ¢) maps A onto itself and L(c, a) is the inverse
of L(a, c), provided that a ¢ Z; (see also [15], [24]). Moreover, it can be readily
verified from (3) and (4) that

L(a,b)L(c,d)f = L(c,d)L(a,b)f (b,d ¢ Zy; f e A (5)
and

L(a,b)L(b,e)f = L(a,c)f (b,c ¢ Zy; feA. (6)

In [21] Ruscheweyh introduced the operator D7 : A — A defined by
Hadamard product:

B z - > L(y+k)
DVf(z) = m*ﬂz)_z+éf(7+l)(/€—l)!akz}€
(v>-1;2€U; fe A, (7)

which implies that

5 (anlf(z))(”)

D"f(z) = " (n € Ng :=NU{0}).
Note that DVf(2) = f(z), D'f(2) = zf'(z) and
DVf(z)=L(y+1,1)f(2)  (2€T). (8)

A function f € A is said to be in the class R+ («, p) (v > —1,|a| < 7/2,0 <
p < 1) if it satisfies the inequality

Re {eiaw} > peosa (z € D). )

z
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Write
R+ (0, p) =R+ (p)-

As is usually the case, we let P be the family of all functions p analytic in
U for which Re(p(z)) > 0 and

p(z) =1+crz+c2® +--- (z € U). (10)
It follows from (9) that

feR(a,p) & eia%(z) =[(1—p)p(2) + p] cosa + isina, (11)

where « is real, |a| < /2 and p(z) € P.
We note that

Ro(a, p) = {f €Al Re{ew‘@} > pcosa},

Ri(a,p) ={f € A|Re {emf'(z)} > peosal,
and the class R1(0,0) = R has been studied in [13].

The object of the present paper is to determine the functional |agas — a3
for the function f € R (a, p). We also obtain some basic properties of the class
R+ (a, p). Our investigation includes a recent result of Janteng et al. [8].

2. Main results

In order to prove our results, we need the following lammas.

Lemma 1. (see [4]) Let the function p € P and be given by the power
series (10). Then |c;| < 2 for each k € N.

Lemma 2. (see [11] and [12]) Let the function p € P and be given by the
power series (10). Then

29 = cf + x(4 —c}) (12)
for some = with |z| <1 and
des =0 +24— Az —e1(4—cD)z® + 24 — )1 - |z]H)z (13)

for some z with |z| < 1.
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Lemma 3. (see [22]) Let f and g be starlike of order 1/2. Then, for each
function F(z), satisfying Re(F(z)) > (0 < 8 < 1), one has

/(2) * F(2)g(2)
RB( () *9(2)

>>[3 (z €U).

We begin by proving the following theorem.

Theorem 1. Let —7/2 < a < 7/2,0 < p < 1 and v > 0. Suppose that
the function f given by (1) be in the class R(a, p). Then

16(1 — p)? cos? o (v < 6)

N BRSO =
‘a2a4 — ag‘ < (14)
(1= p)2(1792 + 367 + 36) cos? «

v 2 6).
TR R o R
The estimate (14) is sharp.
Proof. Let f € R(«,p). Then, from (11) we have
1o Dwf(z) .
e = (1= p)p(2) + p]cosa + sin o (z € 1), (15)

where p € P and is given by (10). By using the series expansion of D7 f(z) and
p(z) as in (7) and (10), equating the coefficients in (15) yields

(v +1)ag = (1 — p)cy cos a,

eia% = (1—p)eacosa, (16)
JA7+UW;2X7+$mF41_m%aE&

Therefore, from (16) we have
2(1 — p)?cos® a
(v +1)?(v+2)

Since the function p(z) and p(e?z) (6 € R) are members of the class P simulta-
neously, we assume that without loss of generality that ¢; > 0. For convenience
of notation, we take ¢; = ¢ (¢ € [0,2]).

Using (12) and (13) in (17), we obtain

3cics 20%
y+3 y+2|

|azas — a3| = (17)

‘a2a4 — a%‘
(1 —p)?cos®

2(y +1)2(y +2) 7+3{ +2(4 = f)er — c(4 = )’
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2{c* +2c%(4 — )z + 2%(4 — )?}
_ o,
(1—p)2cos? 3 2 6c(4 — c2)c?
2(y + 12(y +2) ‘ <7+3 - 7+2) o ( Y +3
4(4 — )2 3c2(4—c?) 24— c?)?
“_7:?_>x‘< V+3 42 >ﬁ
n 6c(4 — ) (1 — |z|?)z
v+3
(1 — p)?cos® yct 2v(4 — c?)c? .
20+ 1)2(v+2) [(v+2)(v+3) (v +2)(v+3)
(4= )0 +87+90) 5 Geld— A1~ [of?):
(v+2)(r+3) 7+3

An application of triangle inequality and replacement of |x| by p give

+2(4 =) (1~ |al*)z}

‘a2a4 — ag‘
(1 —p)?cos?a [ et 2vc?(4 — c?)
2+ 12 +2) L +2)(7 +3) (v +2)(+3)"

_l’_

(v +2)(y +3) K v+3 v+3
(1—p)2cos® [ et 6c(4 — c2)
20 +1)2(v+2) Ly +2)(vy+3)  y+3
2y (4 — %) . (4 —c2)(c—2)(yc — 4y —12) HQ]
(v+2)(y +3) (v+2)(y +3)
= F(c,p),
where 0 <c<2and 0 < p < 1.

We now maximize the function F'(c,p) on the closed square [0,2]x]0,1].
Since

(4—cA) (v +8y+24) 5  6c(4—c?) 64— c?) 2]

(18)

OF  (1—p)cos?a [ 2yc(4—c?)
o 200+ 1)2(v+2) [(v+2) (v +3)
2(4 — 2)(c — 2)(yc — 4y — 12)
(V+2)(v +3) gl

¢c—2 < 0and y¢ — 4y — 12 < 0, we have 0F/0u > 0 for 0 < ¢ < 2 and
0 < pu < 1. Thus F(c, p) cannot have a maximum in the interior of the closed
square [0,2]x[0,1]. Moreover, for fixed ¢ € [0, 2],

onax, F(e,p) = F(c, 1) = G(c).
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One can obtain that
lagas — a3| < G(c),

where
Glo) = (1 —p)?cos?a et 6c(4 — c2)
20+ 1°(v+2) [(v+2)(v+3)  v+3
2vc%(4 — %) (4 —c2)(c—2)(ye — 4y —12)
(v +2)(y +3) (v +2)(v +3)
Since

G(c) = —46(21 —p)? CQOSQ !
(v +1?(v+2*(y +3)
we have to consider following two cases:

Case 1. For v < 6, G'(¢) < 0 for 0 < ¢ < 2 and has real critical point
at ¢ = 0. Also G(c) > G(2). Therefore, maxg<.<2 occurs at ¢ = 0. Thus the
upper bound of (18) corresponds to p =1 and ¢ = 0. Hence, we get
16(1 — p)? cos? a
(v + 1D (v +2)*

Case 2. Let v > 6. After necessary calculations, it is obtain that

G'(0)=0 and G (W) =

{ve* —y+6},

|agay — a3] <

Since

G"0)>0 and G (\/1 - 6/7) <0
G(c) has a maximum at ¢ = /1 — 6/v. Hence, we have

(1 — p)%(1792 + 36 + 36) cos? a
(v + 1% (v + 2)%(v + 3)

|a2a4 — a§| <

Equality holds for the function

1+ (1—2p)22

f(2)=®(1,y+1;2) xe @ [z( 5 cosa—i—isina)}

1—=z
This completes the proof of Theorem 1. O

Putting o = 0 in Theorem 1, we get the following consequence.

Corollary 1. If the function f(z) given by (1) be in the class R~(p), then
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16(1 — p)*
(v +1)%(v +2)?

|a2a4 — a§| <
(1 — p)?(1792 + 36 + 36)
(v + 12y +2)%(y +3)

Equality holds for the function

z(1+ (1 —2p)z?)

f(z) =@(Ly +1;2) 5

1—2z

Remark. Taking v =1, « = 0 and p = 0 in Theorem 1, we get a recent
result due to Janteng et al. [8].

Theorem 2. Suppose that —7/2 < a <w/2,0<p<1and~y >0. Then
R"H—l(aap) - R’Y(aap)' (19)
Proof. Let f € Ry41(o, p). By using (5), (6) and (8), we have

Df(z) = Liv+1,1)f(2)
= Lv+2,1)L(1,v+2)L(v+1,1)f(2)
= L(v+1,7y+2)D"f(2)
= O(y+1,7+2;2)« D f(2),

where the function ® is defined by (4). Therefore,

emDVf(z) - Dy + 1,7+ 2;2) % (eiO‘D'YJrlf(z)/z) -z
z Oy +1,7v+2;2) %2
f(2) * F(2)g(z)
f(2)xg(z)

where f(z) = ®(y + 1,7 + 2;2), g(z) = z and F(z2) = D" f(2)/2. We
note that g € §*(1/2) and Re(F(z)) > pcosa. Moreover, by using a result
of Bernardi [1], we observe that ®(y + 1,7 + 2;2) € §*(1/2). Therefore, by
applying Lemma 3,

DY
Re(e’aﬂ>>pcosa (—g<a<g;0§p<1;z€U).
z
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Hence, f € R (a, p), which completes the proof of Theorem 2. O

Theorem 3. Let —7/2 < a < 7/2,0 < p <1 and vy > 0. Suppose that
f€8%(1/2) and g € R (o, p), then the Hadamard product

(f x9)(2) € Ry(a,p) (2 €0). (20)

Proof. Since the Hadamard product is associative and commutative, we
obtain

DY(fxg)(2) = f(z) x D7g(z) (2 €l).
Therefore, we get

euyl)v(f’kg)(z) f(z)x (e“DVg(2)/z) - =

z N f(z)*z
Thus, by applying Lemma 3, we observe that
DY
Re <e’aM> > pcos .
z
Hence, (f * g)(z) € R(c, p), and the proof of Theorem 3 is complete. O
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