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1. Introduction and definitions

Let A denote the class of functions f(z) of the form

f(z) = z +
∞
∑

k=2

akz
k, (1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}. Also
let S, S∗(β) (0 ≤ β < 1) and K(β) (0 ≤ β < 1) denote the subclasses of A
consisting of functions which are univalent, starlike of order β and convex of
order β functions in U (cf. [6], [20]). In particular, S∗(0) = S and K(0) = K
are the familiar classes of starlike and convex functions in U, respectively.
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In 1976, Noonan and Thomas [17] defined the qth Hankel determinant of
f(z) for q ≥ 1 and n ≥ 1 by

Hq(n) =
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∣

∣

∣

∣
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an an+1 · · · an+q−1
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...
...

...
...

an an+1 · · · an+q−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

This Hankel determinant is useful and has also been considered by several
authors. For example, Noor in [18] determined the rate of growth of Hq(n)
as n → ∞ for functions f given by (1) with bounded boundary. Ehrenborg
[5] studied the Hankel determinant of exponential polynomials. The Hankel
transform of an integer sequence was defined and some of its properties were
discussed by Layman [10]. It is well known ([4]) that for f ∈ S and given by
(1) the sharp inequality |a3 − a22| ≤ 1 holds. This corresponds to the Hankel
determinant with q = 2 and n = 1. After that, Fekete-Szegö further generalized
the estimate |a3 − µa22| with real µ and f ∈ S. For results related to the
functional, see [3], [7], [9], [14] and [19]. Here we consider the second Hankel
determinant in the case of q = 2 and n = 2, namely,

H2(2) =

∣

∣

∣

∣

a2 a3
a3 a4

∣

∣

∣

∣

= a2a4 − a23. (2)

In particular, sharp bounds onH2(2) were obtained by several authors of articles
[8], [15]-[16], [23] and [25] for different subclasses of univalent functions.

For the functions f, g ∈ A and given by the series

f(z) = z +

∞
∑

k=2

akz
k and g(z) = z +

∞
∑

k=2

bkz
k (z ∈ U),

we define the Hadamard product (or convolution) of f and g by

(f ∗ g)(z) = z +

∞
∑

k=2

akbkz
k = (g ∗ f)(z) (z ∈ U).

Making use of the Hadamard product, Carlson-Shaffer [2] defined the linear
operator L(a, c) : A → A by

L(a, c)f(z) = Φ(a, c; z) ∗ f(z) (f ∈ A), (3)

where
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Φ(a, c; z) =
∞
∑

k=0

(a)k
(c)k

zk+1 (z ∈ U; c /∈ Z
−
0 := {0,−1,−2, · · · }) (4)

and (λ)k is the Pochhammer symbol defined, in terms of the Gamma function,
by

(λ)k =
Γ(λ+ k)

Γ(λ)

=

{

1 (k = 0)
λ(λ+ 1) · · · (λ+ k − 1) (k ∈ N := {1, 2, 3, · · · }).

The Carlson-Shaffer operator L(a, c) mapsA onto itself and L(c, a) is the inverse
of L(a, c), provided that a /∈ Z

−
0 (see also [15], [24]). Moreover, it can be readily

verified from (3) and (4) that

L(a, b)L(c, d)f = L(c, d)L(a, b)f (b, d /∈ Z
−
0 ; f ∈ A) (5)

and

L(a, b)L(b, c)f = L(a, c)f (b, c /∈ Z
−
0 ; f ∈ A). (6)

In [21] Ruscheweyh introduced the operator Dγ : A → A defined by
Hadamard product:

Dγf(z) =
z

(1− z)γ+1
∗ f(z) = z +

∞
∑

k=2

Γ(γ + k)

Γ(γ + 1)(k − 1)!
akz

k

(γ ≥ −1; z ∈ U; f ∈ A), (7)

which implies that

Dnf(z) =
z
(

zn−1f(z)
)(n)

n!
(n ∈ N0 := N ∪ {0}).

Note that D0f(z) = f(z), D1f(z) = zf ′(z) and

Dγf(z) = L(γ + 1, 1)f(z) (z ∈ U). (8)

A function f ∈ A is said to be in the class Rγ(α, ρ) (γ ≥ −1, |α| < π/2, 0 ≤
ρ < 1) if it satisfies the inequality

Re

{

eiα
Dγf(z)

z

}

> ρ cosα (z ∈ U). (9)
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Write

Rγ(0, ρ) = Rγ(ρ).

As is usually the case, we let P be the family of all functions p analytic in
U for which Re(p(z)) > 0 and

p(z) = 1 + c1z + c2z
2 + · · · (z ∈ U). (10)

It follows from (9) that

f ∈ Rγ(α, ρ) ⇔ eiα
Dγf(z)

z
= [(1− ρ)p(z) + ρ] cosα+ i sinα, (11)

where α is real, |α| < π/2 and p(z) ∈ P.

We note that

R0(α, ρ) =

{

f ∈ A | Re

{

eiα
f(z)

z

}

> ρ cosα

}

,

R1(α, ρ) =
{

f ∈ A | Re
{

eiαf ′(z)
}

> ρ cosα
}

,

and the class R1(0, 0) = R has been studied in [13].

The object of the present paper is to determine the functional |a2a4 − a23|
for the function f ∈ Rγ(α, ρ). We also obtain some basic properties of the class
Rγ(α, ρ). Our investigation includes a recent result of Janteng et al. [8].

2. Main results

In order to prove our results, we need the following lammas.

Lemma 1. (see [4]) Let the function p ∈ P and be given by the power
series (10). Then |ck| ≤ 2 for each k ∈ N.

Lemma 2. (see [11] and [12]) Let the function p ∈ P and be given by the
power series (10). Then

2c2 = c21 + x(4− c21) (12)

for some x with |x| ≤ 1 and

4c3 = c31 + 2(4− c21)c1x− c1(4− c21)x
2 + 2(4− c21)(1− |x|2)z (13)

for some z with |z| ≤ 1.
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Lemma 3. (see [22]) Let f and g be starlike of order 1/2. Then, for each
function F (z), satisfying Re(F (z)) > β (0 ≤ β < 1), one has

Re

(

f(z) ∗ F (z)g(z)

f(z) ∗ g(z)

)

> β (z ∈ U).

We begin by proving the following theorem.

Theorem 1. Let −π/2 < α < π/2, 0 ≤ ρ < 1 and γ ≥ 0. Suppose that
the function f given by (1) be in the class Rγ(α, ρ). Then

∣

∣a2a4 − a23
∣

∣ ≤























16(1 − ρ)2 cos2 α

(γ + 1)2(γ + 2)2
(γ ≤ 6)

(1− ρ)2(17γ2 + 36γ + 36) cos2 α

γ(γ + 1)2(γ + 2)2(γ + 3)
(γ ≥ 6).

(14)

The estimate (14) is sharp.

Proof. Let f ∈ Rγ(α, ρ). Then, from (11) we have

eiα
Dγf(z)

z
= [(1− ρ)p(z) + ρ] cosα+ sinα (z ∈ U), (15)

where p ∈ P and is given by (10). By using the series expansion of Dγf(z) and
p(z) as in (7) and (10), equating the coefficients in (15) yields

eiα(γ + 1)a2 = (1− ρ)c1 cosα,

eiα
(γ + 1)(γ + 2)

2
a3 = (1− ρ)c2 cosα, (16)

eiα
(γ + 1)(γ + 2)(γ + 3)

6
a4 = (1− ρ)c3 cosα.

Therefore, from (16) we have
∣

∣a2a4 − a23
∣

∣ =
2(1− ρ)2 cos2 α

(γ + 1)2(γ + 2)

∣

∣

∣

∣

3c1c3
γ + 3

−
2c22
γ + 2

∣

∣

∣

∣

. (17)

Since the function p(z) and p(eiθz) (θ ∈ R) are members of the class P simulta-
neously, we assume that without loss of generality that c1 > 0. For convenience
of notation, we take c1 = c (c ∈ [0, 2]).

Using (12) and (13) in (17), we obtain

∣

∣a2a4 − a23
∣

∣

=
(1− ρ)2 cos2 α

2(γ + 1)2(γ + 2)

∣

∣

∣

∣

3c

γ + 3
{c3 + 2(4− c2)cx− c(4− c2)x2
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+ 2(4 − c2)(1− |x|2)z} −
2{c4 + 2c2(4− c2)x+ x2(4− c2)2}

γ + 2

∣

∣

∣

∣

=
(1− ρ)2 cos2 α

2(γ + 1)2(γ + 2)

∣

∣

∣

∣

(

3

γ + 3
−

2

γ + 2

)

c4 +

(

6c(4 − c2)c2

γ + 3

−
4(4 − c2)c2

γ + 2

)

x−

(

3c2(4− c2)

γ + 3
+

2(4− c2)2

γ + 2

)

x2

+
6c(4 − c2)(1− |x|2)z

γ + 3

∣

∣

∣

∣

=
(1− ρ)2 cos2 α

2(γ + 1)2(γ + 2)

∣

∣

∣

∣

γc4

(γ + 2)(γ + 3)
+

2γ(4 − c2)c2

(γ + 2)(γ + 3)
x

−
(4− c2)(γc2 + 8γ + 24)

(γ + 2)(γ + 3)
x2 +

6c(4 − c2)(1 − |x|2)z

γ + 3

∣

∣

∣

∣

.

An application of triangle inequality and replacement of |x| by µ give
∣

∣a2a4 − a23
∣

∣

≤
(1− ρ)2 cos2 α

2(γ + 1)2(γ + 2)

[

γc4

(γ + 2)(γ + 3)
+

2γc2(4− c2)

(γ + 2)(γ + 3)
µ

+
(4− c2)(γc2 + 8γ + 24)

(γ + 2)(γ + 3)
µ2 +

6c(4 − c2)

γ + 3
−

6c(4 − c2)

γ + 3
µ2

]

=
(1− ρ)2 cos2 α

2(γ + 1)2(γ + 2)

[

γc4

(γ + 2)(γ + 3)
+

6c(4 − c2)

γ + 3

+
2γc2(4− c2)

(γ + 2)(γ + 3)
µ+

(4− c2)(c− 2)(γc − 4γ − 12)

(γ + 2)(γ + 3)
µ2

]

(18)

:= F (c, µ),

where 0 ≤ c ≤ 2 and 0 ≤ µ ≤ 1.
We now maximize the function F (c, µ) on the closed square [0,2]×[0,1].

Since

∂F

∂µ
=

(1− ρ)2 cos2 α

2(γ + 1)2(γ + 2)

[

2γc2(4− c2)

(γ + 2)(γ + 3)

+
2(4 − c2)(c − 2)(γc − 4γ − 12)

(γ + 2)(γ + 3)
µ

]

,

c − 2 < 0 and γc − 4γ − 12 < 0, we have ∂F/∂µ > 0 for 0 < c < 2 and
0 < µ < 1. Thus F (c, µ) cannot have a maximum in the interior of the closed
square [0,2]×[0,1]. Moreover, for fixed c ∈ [0, 2],

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c).
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One can obtain that
∣

∣a2a4 − a23
∣

∣ ≤ G(c),

where

G(c) =
(1− ρ)2 cos2 α

2(γ + 1)2(γ + 2)

[

γc4

(γ + 2)(γ + 3)
+

6c(4 − c2)

γ + 3

+
2γc2(4− c2)

(γ + 2)(γ + 3)
+

(4− c2)(c − 2)(γc − 4γ − 12)

(γ + 2)(γ + 3)

]

.

Since

G′(c) =
−4c(1 − ρ)2 cos2 α

(γ + 1)2(γ + 2)2(γ + 3)

{

γc2 − γ + 6
}

,

we have to consider following two cases:

Case 1. For γ ≤ 6, G′(c) < 0 for 0 < c < 2 and has real critical point
at c = 0. Also G(c) > G(2). Therefore, max0≤c≤2 occurs at c = 0. Thus the
upper bound of (18) corresponds to µ = 1 and c = 0. Hence, we get

∣

∣a2a4 − a23
∣

∣ ≤
16(1 − ρ)2 cos2 α

(γ + 1)2(γ + 2)2
.

Case 2. Let γ ≥ 6. After necessary calculations, it is obtain that

G′(0) = 0 and G′
(

√

1− 6/γ
)

= 0.

Since

G′′(0) > 0 and G′′
(

√

1− 6/γ
)

< 0,

G(c) has a maximum at c =
√

1− 6/γ. Hence, we have

∣

∣a2a4 − a23
∣

∣ ≤
(1− ρ)2(17γ2 + 36γ + 36) cos2 α

γ(γ + 1)2(γ + 2)2(γ + 3)
.

Equality holds for the function

f(z) = Φ(1, γ + 1; z) ∗ e−iα

[

z

(

1 + (1− 2ρ)z2

1− z2
cosα+ i sinα

)]

.

This completes the proof of Theorem 1. �

Putting α = 0 in Theorem 1, we get the following consequence.

Corollary 1. If the function f(z) given by (1) be in the class Rγ(ρ), then
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∣

∣a2a4 − a23
∣

∣ ≤























16(1 − ρ)2

(γ + 1)2(γ + 2)2
(γ ≤ 6)

(1− ρ)2(17γ2 + 36γ + 36)

γ(γ + 1)2(γ + 2)2(γ + 3)
(γ ≥ 6).

Equality holds for the function

f(z) = Φ(1, γ + 1; z) ∗
z
(

1 + (1− 2ρ)z2
)

1− z2
.

Remark. Taking γ = 1, α = 0 and ρ = 0 in Theorem 1, we get a recent
result due to Janteng et al. [8].

Theorem 2. Suppose that −π/2 < α < π/2, 0 ≤ ρ < 1 and γ ≥ 0. Then

Rγ+1(α, ρ) ⊂ Rγ(α, ρ). (19)

Proof. Let f ∈ Rγ+1(α, ρ). By using (5), (6) and (8), we have

Dγf(z) = L(γ + 1, 1)f(z)

= L(γ + 2, 1)L(1, γ + 2)L(γ + 1, 1)f(z)

= L(γ + 1, γ + 2)Dγ+1f(z)

= Φ(γ + 1, γ + 2; z) ∗Dγ+1f(z),

where the function Φ is defined by (4). Therefore,

eiα
Dγf(z)

z
=

Φ(γ + 1, γ + 2; z) ∗
(

eiαDγ+1f(z)/z
)

· z

Φ(γ + 1, γ + 2; z) ∗ z

=
f(z) ∗ F (z)g(z)

f(z) ∗ g(z)
,

where f(z) = Φ(γ + 1, γ + 2; z), g(z) = z and F (z) = eiαDγ+1f(z)/z. We
note that g ∈ S∗(1/2) and Re(F (z)) > ρ cosα. Moreover, by using a result
of Bernardi [1], we observe that Φ(γ + 1, γ + 2; z) ∈ S∗(1/2). Therefore, by
applying Lemma 3,

Re

(

eiα
Dγf(z)

z

)

> ρ cosα
(

−
π

2
< α <

π

2
; 0 ≤ ρ < 1; z ∈ U

)

.
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Hence, f ∈ Rγ(α, ρ), which completes the proof of Theorem 2. �

Theorem 3. Let −π/2 < α < π/2, 0 ≤ ρ < 1 and γ ≥ 0. Suppose that
f ∈ S∗(1/2) and g ∈ Rγ(α, ρ), then the Hadamard product

(f ∗ g)(z) ∈ Rγ(α, ρ) (z ∈ U). (20)

Proof. Since the Hadamard product is associative and commutative, we
obtain

Dγ(f ∗ g)(z) = f(z) ∗Dγg(z) (z ∈ U).

Therefore, we get

eiα
Dγ(f ∗ g)(z)

z
=

f(z) ∗
(

eiαDγg(z)/z
)

· z

f(z) ∗ z
.

Thus, by applying Lemma 3, we observe that

Re

(

eiα
Dγ(f ∗ g)(z)

z

)

> ρ cosα.

Hence, (f ∗ g)(z) ∈ Rγ(α, ρ), and the proof of Theorem 3 is complete. �
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