PICARD-LINDELOF ITERATIONS AND
MULTIPLE SHOOTING METHOD FOR
PARAMETER ESTIMATION

Abstract

In this article, we modify the Picard-Lindelöf iteration scheme in order to show an iteration algorithm for parameter estimation of ordinary differential equations. The proposed algorithm inherited the advantages exhibited in the classical algorithms and, moreover, the parameters can be transformed to a form that are convenient and suitable for computation. In the end, a numerical example has also been discused to highlight the results.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 33
Issue: 5
Year: 2020

DOI: 10.12732/ijam.v33i5.12

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] J.P.N. Bishwal, Parameter Estimation in Stochastic Differential Equations, Lecture Notes in Math., 1923, Springer, Berlin, 2008.
  2. [2] H.G. Bock, Numerical treatment of inverse problems in chemical reaction kinetics, In: Modelling of Chemical Reaction Systems (Ed-s: K. Ebert, P. Deuflhard, and W. Jager), Springer, 1981, 102-125.
  3. [3] H.G. Bock, Recent advances in parameter identification techniques for ordinary differential equations, In: Numerical Treatment of Inverse Problems in Differential and Integral Equations (Ed-s: P. Deuflhard and E. Hairer), Birkha¨user, 1983, 95-121.
  4. [4] H.G. Bock, Randwertproblemmethoden zur Parameteridenti Fizierung in Systemen Nichtlinearer Differentialgleichungen, PhD Thesis, Universitat Bonn, 1987.
  5. [5] N. J-B. Brunel, Parameter estimation of ODE's via nonparametric estimators, Electronic Journal of Statistics, 2 (2008), 1242-1267, doi: 10.1214/07- EJS132.
  6. [6] A. Dishliev, K. Dishlieva, S. Nenov, Specific Asymptotic Properties of the Solutions of Impulsive Differential Equations. Methods and Applications, Academic Publication, 2011.
  7. [7] N. Kyurkchiev, On a sigmoidal growth function generated by reaction networks. some extensions and applications, Communications in Applied Analysis, 23, No. 3 (2019), 383-400.
  8. [8] N. Kyurkchiev, A. Iliev, and A. Rahnev, On a special choice of nutrient supply for cell growth in a continuous bioreactor. Some modeling and approximation aspects, Dynamic Systems and Applications, 28, No. 3 (2019), 587-606.
  9. [9] V. Kyurkchiev, A. Iliev, A. Rahnev and N. Kyurkchiev, Some New Logistic Differential Models: Properties and Applications, Lambert, 2019.
  10. [10] H. Miao, X. Xia, A.S. Perelson, Hulin Wu, On identifiability of nonlinear ode models and applications in viral dynamics, SIAM Review, 53, No. 1 (2011), 3-39, doi: 10.1137/090757009.
  11. [11] S.I. Nenov, Impulsive controllability and optimization problems in population dynamics, Nonlinear Analysis: Theory, Methods & Applications, Pergamon, 36, No. 7 (1999).
  12. [12] A. Papavasiliou, Ch. Ladroue, Parameter estimation for rough differential equations, The Annals of Statistics, 39, No. 4 (2011), 2047-2073, doi: 10.1214/11-AOS893.
  13. [13] D. Rocha, S. Gouveia, C. Pinto, M. Scotto, J.N. Tavares, E. Valadas, and L.F. Caldeira, On the parameters estimation of HIV dynamic models, REVSTAT – Statistical Journal, 17, No. 2 (2019), 209-222.
  14. [14] D.S. Stratiev, R.K. Dinkov, I.K. Shishkova, A.D. Nedelchev, T. Tsaneva, E. Nikolaychuk, I.M. Sharafutdinov, N. Rudney, S. Nenov, M. Mitkova, M. Skunov, D. Yordanov, An investigation on the feasibility of simulating the distribution of the boiling point and molecular Weight of heavy oils, Petroleum Science and Technology, 33, No. 5 (2015), 527-541.