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1. Introduction

In this paper we study the existence of solutions of the second-order p-Laplacian
equation

(p (W (2)))" = al@)pq (u (@) + b(x)er (u(2)) =0, 0<z<L (1)
coupled with the Dirichlet conditions
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w(0) =u (L) =0. (2)

We denote ¢, (t) = [t[’">t, t € R for p > 1 and assume that 1 <p < ¢ <7,
a(z) and b(z) are positive continuous functions on [0,L]. Partial cases of
Eq. (1) are considered by many authors and appear in biomathematical and
phase-transition models. Austin [2] considers the case p = 2,¢ = 3,r = 4
in a model of an aneurysm in the circle of Willis. Grossinho and Sanchez [7]
consider the periodic solutions of the equation in this case using variational
method. Further periodic and homoclinic solutions are studied in [9]. Systems
of p-Laplacian equations are considered in [4] using critical point theory for
non-smooth functionals. Higher-order equations are studied in [8] using the
generalized Clark’s theorem. It is applied to fourth-order p-Laplacian equations
in [10]. The case p = 2 is considered in the thesis of Kalcheva [5], Chapter 2.

Further, by (P) will denote the problem (1) and (2). It has a variational
structure, which means that its solutions can be obtained as critical points of
a C! functional J on a Sobolev space X, defined as

X = W,P(0,L) = {u e LP(0,L) : v € LP(0,L),u(0) = u(L) = 0}, (3)

where LP (0, L) is the usual Lebesque space. The space X is a separable Banach
space with norm

lullx = (/OL (| @)]" + u(@)) d“f‘);

which is equivalent to the norm

Jull = ( | e <x>|”dx>’l’ 7 (1)

by the Poincare inequality ||ul|y < C'||/||», where |lul}, = fOL |ulP dz.

Moreover, the embedding X € C ([0, L]) is compact, w € L9 (0, L) for ¢ > p
and

L
/0 fu ()] dz < [l 532 lull% |

(see [3], Chapter 8). We suppose that a (z) and b(z) are positive continuous
functions and there are constants a;, b; for j = 1,2 such that

0<a <a(z)<az, 0<b <b(x)<bs. (5)
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The functional J : X — R is defined as
1 1P I 1 * r
J(u) = - ‘u (l‘)‘ dz + - a(z)|u(z)|*dx — - b(z) |u(x)|" de.
p qJo rJo

Under conditions (5), J is C! functional, which can be shown in a standard
way (see [9],[5]) and

L
(J' (x),v) = /0 (gop (u/) v +a(z) o, (u)v—">b(z) e (u) v) dx.

By a weak solution of problem (1) we mean a function u € X, such that

L
/0 (gop (u/) v +a(z) o, (u)v—0b(z) e (u) v) dx =0, (6)

i.e. u is a critical point of .J.

By a solution of problem (P) we mean a function u € C ([0, L]), such that
wp (u') € AC ([0, L]) and u (x) satisfies Eq. (1) for « € [0, L] and boundary con-
dition (2). Here AC ([0, L]) denotes the space of absolutely continuous functions
on [0, L] (see [1], [3]). Let u be a weak solution of (P), i.e. let (6) hold. Since
w = g, (u) € AC ([0, L)) = WL (0, L),

L L
/ wv' dz = —/ w'v de,
0 0

for every v € X. By v/ = ¢y (w) = ¢, (w) € C ([0, L]), where % + 1% =1 1It
follows that

/OL ((\w‘p—%')' — (@) [ulT P4 b () [u] 2 M) e — 0

for every v € Cg° ([0, L]). Then it follows that u is a solution of (P). Further
we look for critical points of functional J in order to find the solution of (P).
We will apply variational method and symmetric mountain-pass theorem. Our
main result is the following:

Theorem 1. Let 1 < p < q <, a(z) and b(z) be positive continuous
functions on [0, L]. Then the problem (P) has infinitely many pairs of solutions.

The case p > r is considered in [10] with application of the generalized
Clark’s theorem. The periodic and homoclinic solutions are studied in [9] in
the case p = 2 and for higher order equations in [§].
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The paper is organized as follows. In Section 2 we present the variational
formulation of the problem, formulate the symmetric mountain-pass theorem
and prove a lemma for the (PS) condition. In Section 3 we prove Theorem 1.

2. Preliminary results

As we mention in Introduction, we denote by X the Sobolev space
X =W,?(0,L) = {ue LP(0,L) :u' € LP (0,L) ,u(0) = u(L) = 0}

equipped with the norm

lull = </OL o/ (@!pdw)%

We consider the functional J : X — R
1 L , » 1 L . 1 L .
J(u) = - | (2)|" da + = a(z)|u(z)|?de — - b(x)|u(x)|" dz,
P Jo q.Jo ™ Jo

and look for critical points of J, which are solutions of (P). We will apply the
following known result.

Theorem 2 ([11], Theorem 9.12). Let E be an infinite dimensional Banach
space and I € C'(E,R) be an even functional which satisfies Palais-Smale (PS)
condition, I (0) = 0. If E =V @ X where V is finite dimensional and I satisfies:

(I1) there are constants p, o > 0 such that I (u) > « if
lullg =p, wekE;

(Iy) for each finite dimensional subspace E,, C E, there exists R,,, such that
I(u) <0ifue By, ||ullgp > Ry

Then, I possesses an unbounded sequence of critical points.

Next, we formulate an inequality due to Lindqvist [6], used in [8] for the
proof of (PS) condition.

Lemma 1 ([6], Lemma 4.2). a) Ifp > 2 one has

(60 (@) = 0p (1) (2 — 3) > ]ﬁ ly — af?

for x,y € R;
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b) Ifl<p<?2

ly — x|”

(o)~ ) (2 =) 2 =2

where C (p) depends only in p.
Now we prove the following auxiliary lemma.

Lemma 2. Let1 < p < g < r, a(z) and b(z) be continuous positive
functions on [0, L] and (5) be satisfied. Then, the functional J : X — R
satisfies the (PS) condition.

Proof. Let {u,} be a (PS)-sequence in X, i.e. {J(u,)} is a bounded se-
quence and J' (u,) — 0 in X*. We have

L
L7 (un) yum) = /O (o @) + a (@) [un (2)|7 — b () Jun (2)]") da

r r

which implies that
1 1 1
7l + 37 @l ol = (5= 1) fualP” )

Then, the sequence {u,} is bounded in X. Indeed, if we suppose that there
is a subsequence {u,, } still denoted by {u,} such that ||u,| — oo, by (7) we
obtain

/
|J(un)\ 1||<] (Un)H* > 1__ >0,

lunll® 1 Jun Pt TP

which implies a contradiction as n — oo, because |J (uy)| is bounded and

|J" (un)]], — 0. Hence {u,} is a bounded sequence in X and let uw, — u
weakly in X. By compact embedding X C C ([0, L]), it follows that:
L L
lim a(z) lup (x)|*dex = / a(z)|u(x)|?de, (8)
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L L
lim b(z)|uy (x)]" dz = /0 b(z)|u(z)|" dz.

n—00 0

We have (J' (u) ,un) — 0 as n — oo by

‘<J/ (un) 7un>| < HJ/ (un)H* llun -
Then,

By Lemma 1, for p > 2 we have

(0 (1) = 2 (1) (o, =) > s o, =P

which implies by (9) that w, — u strongly in X. If 1 < p < 2 by Lemma 1 and
Hoélder’s inequality we have

L
0=t [ (12) = () (s~ ) o
> Jim (ol = ) (a1 = 25" = 0.

which shows that ||u,|| — ||u||. Since X is an uniformly confex Banach space
(see [3]) and u,, — u weakly in X, then u,, — u strongly in X which completes
the proof of Lemma 2. O

3. Proof of the main result

In this section we prove Theorem 1 and verify the geometric assumptions of
Theorem 2.

Since X = W,? (0,L) ¢ C([0,L]) € L9(0, L) for ¢ > 1 there are constants
k1 and k9 such that for u € X

ulla = (/OL IU(JJ)\qdw)% <k [Jull, (10)

el = ( / ’ |u<x>vdx> < ky Jull.

3=
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Proof of Theorem 1

We apply Theorem 2 with V' = {0}. To show (1) in X we have by (5) and (10)

7 (u) 1nnp+1/¢ () [u[*d 1/%b(ﬂ rd
u) = —||u — a\xr)|u xr — — ) |u T
p q.Jo ™ Jo

1 boko
> = ul” = = llu]"
p T
Since r > p, for ||u|| = e sufficiently small there exists a > 0 such that

J(u) > a>0if |ul]| = p.

To prove the condition (I3) of Theorem 2, let X, C X be an n-dimensional
subspace of X and v, € X,, is arbitrary point. Since X, is finite dimensional
space there are constants dj,,j = 1, ...,4 such that

din [lonll < l[onllpe < don [lonll,
dsp [|on]] < [lonllLr < dan [vnll -

Then by (5) and last inequalities we have:

L plL q—levxTx
T (o) = el + = [ a@ o @ltar = [Tb@ o, @)l a

1 agdq bldr
< = lonll” + =2 o | — =22
p q

lonll”

1 agdq _ b1 dh —
= lonl?” (5 + 20 o, = = 2 o, )

By 1 < p < ¢ < r, there exists R, sufficiently large, such that J (v,) < 0 for
||lunll > Ry. Then by Theorem 2, the functional J has infinitely many pairs of
critical points. O
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