
International Journal of Applied Mathematics
————————————————————–
Volume 33 No. 5 2020, 937-949
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v33i5.14

STUDY OF FLOW DYNAMICS IN THE MODEL OF

CARGO TRANSPORTATION ORGANIZATION

BETWEEN NODE STATIONS

Nerses K. Khachatryan

State Academic University for the Humanities
Maronovskiy pereulok, 26
119049 – Moscow, RUSSIA

Abstract: This article presents a model of the organization of railway cargo
transportation on a section of the railway network between two node stations.
All stations have the same characteristics, such as the number of roads on them,
the efficiency of their use, as well as the capacity. The latter characteristic is
defined as the maximum amount of transported cargo per unit of time, depend-
ing on the load of the stations, i.e. on the number of involved roads. Using a
a system of differential equations with discontinuous right parts, the intensity
of cargo flow is set, which depends on the intensity of the supply of goods to
the initial nodal station and the rules for moving goods from one station to
another. A numerical realization of this system is carried out, with the help of
which the dynamics of the load of stations and the flow arising in the system
of cargo transportation are investigated.
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1. Introduction

Transport plays an important role in the country’s economy. It ensures the
development, communication and coordination of the work of all sectors of the
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economy, and also the connection between the regions of the country. The de-
velopment of transport is the most important condition for the modernization of
the economy. It is impossible without optimal planning of networks, improving
the organization of traffic and a number of other problems, the solution of which
is impossible without mathematical modeling of traffic flows. Two major areas
can be distinguished here: modeling the loading of urban transport networks
and modeling of traffic dynamics (see [1]). The first direction is represented by
models of correspondence calculation such as the gravitational model (see [2]),
the entropy model (see [3]), the models of a family of competing destinations
(see [4], [5]), as well as models of flow distribution, including various options
equilibrium distribution and model of optimal strategies (see [6], [7], [8], [9]).
The second direction is represented by the main classes of dynamic models -
macroscopic and microscopic. Macroscopic model (see [10], [11], [12]) describe
the movement of vehicles in average terms, such like density, average speed,
flow, etc. With this approach, the traffic flow is likened to the movement of a
specific liquid, therefore, models of this class are also called hydrodynamic mod-
els. Microscopic models are those that explicitly model the movement of each
car. This approach makes it possible to theoretically achieve a more accurate
description of the movement of vehicles on compared to an average macro de-
scription, but this approach requires more computational resources in practical
applications. Examples of such models are follow-the-leader models (see [13]),
optimal-speed models (see [14]), Treiber model (see [15]), as well as models of
cellular automata (see [16], [17]). Note that macroscopic models are usually
used when describing the movement of road transport.

This article presents a macroscopic dynamic model describing the movement
of railway transport between two node stations. The main difference from
similar models (see [18], [19], [20], [21], [22]) is the rejection of the assumption
that there are special roads between stations for temporary storage of part of
the cargo in case of high load of stations, as well as modification of the station
capacity setting. To the initial node station cargo it is received with some
intensity within its capacity. Further movement of goods is carried out with
intensity the value of which depends on both the capacity of the stations and the
intensity of the supply of goods to the initial node station. The main objective of
this study is to match the intensity of movement of goods from station to station
with the intensity of supply cargo to the initial node station, which allows you
to determine the practically realizable modes of cargo transportation.
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2. Model description

Consider the movement of goods on a railway line between two node stations
connected by a set of intermediate stations. Let the number of intermediate
stations be equal tom. Denoting by 0 andm+1, respectively the numbers of the
initial and final node stations, we obtain the following set of station numbers:
{0, 1, ..,m,m + 1}. We assume that the number of roads at all stations is the
same and equal to ∆. Each station at an arbitrary time is characterized by
the number of involved roads. Denote by zi(t), i = 0, 1, ...,m+1 the number of
roads involved at i - th station at time t. Obviously, the functions zi(t) must
satisfy the following restrictions:

0 ≤ zi(t) ≤ ∆, i = 0, 1, ...,m,m + 1. (1)

Stations have a certain capacity. In this model, it is expressed as the max-
imum amount of cargo transported per unit of time, depending on the station
load, and is described using a continuous decreasing function ϕ(.), defined on
the segment [0,∆] and satisfying the condition ϕ(∆) = 0. In this regard, each
station with the number i = 1, ...,m receives cargo from the i−1-th station with
the intensity λϕ(zi) if i− 1-th station is not empty and sends to the next sta-
tion with the intensity λϕ(zi+1), if the station with the number i is not empty
(0 < λ ≤ 1). The cargo arrives at the initial station with a certain constant
intensity d, not exceeding ϕ(z0). From the final station, the cargo is distributed
with an intensity of d if it is not empty.

Thus, the intensity of cargo traffic at stations is set by the following system
of differential equations:

ż0(t) = min(d, ϕ(z0))− λϕ(z1) sign(z0), t ∈ [0,+∞), (2)

żi(t) =λϕ(zi) sign(zi−1)− λϕ(zi+1) sign(zi),

i = 1, 2...,m, t ∈ [0,+∞), (3)

żm+1(t) =λϕ(zm+1) sign(zm)− d sign(zm+1), t ∈ [0,+∞). (4)

The function sign(.), involved in the equations (2)−(4), is defined as follows:

sign(t) =

{

1, if t > 0
0, if t ≤ 0.

Note that the construction of the right parts of the system (2) − (4) guar-
antees that any solution that satisfies the condition (1) at the initial time will
satisfy it at subsequent times. Everywhere in the future, we will assume that
the initial condition for the system (2) − (4) satisfies (1).
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Analytical investigation of solutions of the system (2)− (4) is extremely dif-
ficult, since the right parts of differential equations are generally discontinuous
functions. In this regard, the system (2) − (4) was investigated numerically.
The main task of the numerical implementation of the system (2) − (4) is to
study the dynamics and nature of its solutions, as well as the intensity of cargo
traffic arising in the cargo transportation system, depending on the parameters
of the model and the initial condition.

3. Results of numerical experiments

Let us proceed to presenting the results of numerical experiments, in which the
function ϕ(.) was defined as follows:

ϕ(zi) = a(∆ − zi), i = 0, 1, ...,m,m + 1. (5)

Recall that the function ϕ(.) must be decreasing and satisfy the condition
ϕ(∆) = 0. The parameter a, involved in the definition of this function de-
scribes the efficiency of using roads at stations. Let us rewrite the system
(2)− (4), in which the function ϕ(.) defined according to (5),

ż0(t) = min(d, a(∆ − z0))

− λa(∆ − z1) sign(z0), t ∈ [0,+∞), (6)

żi(t) =λa[(∆ − zi) sign(zi−1)− (∆ − zi+1) sign(zi)],

i = 1, 2...,m, t ∈ [0,+∞), (7)

żm+1(t) =λa(∆ − zm+1) sign(zm)

− d sign(zm+1), t ∈ [0,+∞). (8)

From condition (1) and the definition of the ϕ(.) It follows that the max-
imum flow that the stations can receive is a∆. Therefore, the parameter d in
the equation (6) can be represented as follows: d = µa∆, where 0 < µ ≤ 1.
Then the system (6) − (8) takes the following form

ż0(t) = min(µa∆, a(∆ − z0))

− λa(∆ − z1) sign(z0), t ∈ [0,+∞), (9)

żi(t) =λa[(∆ − zi) sign(zi−1)− (∆ − zi+1) sign(zi)],

i = 1, 2...,m, t ∈ [0,+∞), (10)

żm+1(t) =λa(∆ − zm+1) sign(zm)

− µa∆sign(zm+1), t ∈ [0,+∞). (11)
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Let us move on to studying solutions to the system (9) − (11). We start
this study with the case when λ = 1.

Investigation of solutions of the system (9)− (11) for λ = 1

It is easy to check that for all 0 < µ < 1 the system (9) − (11) has a
stationary solution

zi(.) ≡ ∆(1− µ), i = 0, 1, ...,m + 1. (12)

Stationary is also any solution of the form

z0(.) ≡ c0, 0 ≤ c0 < ∆(1− µ), zi(.) ≡ ∆(1− µ), i = 1, ...,m + 1. (13)

Numerical experiments have shown that the stationary solution (12) is
asymptotically stable in the domain D ∈ Rm+2, where

D = {x ∈ Rm+2| ∆(1− µ) ≤ xi ≤ ∆, i = 0, 1, ...,m + 1},

i.e. for any solution {z̃i(.)}
m+1
i=0 , satisfying the condition

∆(1− µ) ≤ z̃i(0) ≤ ∆, i = 0, 1, ...,m + 1, (14)

will be fair

lim(zi(t)) = ∆(1− µ) for t → +∞ (15)

for all i = 0, 1, ...,m + 1 (Fig. 1).
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Fig 1. The first type of solutions of system (9)− (11)
(∆ = 10, a = 2, µ = 0.7)

At the same time, a stationary flow is established in the cargo transportation
system, the value of which is equal to µa∆ (Fig. 2).

Fig. 2. Establishing a stationary flow (∆ = 10, a = 2, µ = 0.7)

This property of solutions is also valid for µ = 1, although in this case the
system (9)− (11) does not have a stationary solution. In this case, the stations
will receive and send cargo with the maximum possible intensity equal to a∆.

Note that the satisfaction of the condition (14) is a sufficient condition for
the convergence of solutions of the system (9)− (11) to the stationary solution
(13), but it is not necessary.

Let us turn to the study of the properties of solutions of the system (9)−(11)
in the case if the condition (14) is not satisfied. Let’s start with some particular
case of non-fulfillment of this condition. For this, we introduce the following
notation:

c =
1

m+ 2

m+1
∑

i=0

zi(0), c̄ = ∆(1− µ)
m+ 1

m+ 2
.

As shown by numerical experiments, if the initial values of the system (9)−(11)
do not satisfy the condition (14), but in this case c ≥ c̄, then the solution of the
system (9)−(11) either converges to the stationary solution (12) (if c ≥ ∆(1−µ))
or to one of the stationary solutions of the form (13) (if c < ∆(1− µ)), where
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c0 = ∆(1− µ) + (c−∆(1− µ))(m+ 1) (Fig. 3).

Fig 3. The second type of solution of system (9)− (11)
(∆ = 10, a = 2, µ = 0.7)

In this case, a stationary flow is also established in the cargo transportation
system, the value of which is µa∆.

Note that c0 is increasing by c and c0(c̄) = 0. For c < c̄ the right parts of
several equations of the system (9) − (11) have discontinuities, which leads to
discontinuities of the corresponding components of the solution. Fig. 4 shows
a graph of this solution. As you can see, starting from a certain point in time,
the zero component of the solution (z0(.)) begins to fluctuate in the vicinity
of zero, taking periodically zero values (suffers a break). Discontinuity of z0(.)
leads to discontinuity z1(.). This follows directly from the right side of the
system (9) − (11). In this case, the intensity of sending goods from the zero
station to the first one changes abruptly, and the magnitude of the jumps can
reach a value exceeding µa∆ (Fig.5).
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Fig 4. Discontinuous solutions of the system (9)− (11)
(∆ = 10, a = 2, µ = 0.7)

Fig 5. Abrupt flow change (∆ = 10, a = 2, µ = 0.7)

Further reduction of the initial values (the value of c) leads to the fact
that the subsequent components of the solution alternately, starting from z1(.)
begin to behave like z0(.) (fluctuate in the vicinity of zero) and this leads to
the appearance of new discontinuous components of the solution.

Let us proceed to the investigation of the general case of non-fulfillment of
the condition (14). Numerical experiments have shown that the above results
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are generalized to the general case as follows: for any parameter 0 < µ < 1
there exist 0 < c̄1 < c̄2 such that:

– for c ≥ c̄2 the solution of the system (9)−(11) is continuous and converges
to the stationary solution (12) (Fig. 1) and the stationary flow is established
in the cargo transportation system, the value of which µa∆ (the first type of
solution);

– for c̄1 < c < c̄2 the solution of the system (9) − (11) is continuous and
converges to one of the stationary solutions of the form (13) (Fig. 3) and a
stationary flow is established in the cargo transportation system, the value of
which is also equal to µa∆ (the second type of solution);

– for c ≤ c̄1 the solution of the system (9)− (11) is discontinuous (Fig. 4),
and the flow intensity between some stations changes abruptly (the third type
of solution).

Thus, for λ = 1 and 0 < µ < 1, depending on the initial conditions, the
system (9) − (11) has three types of solutions. Once again, we note that for
µ = 1 every solution of the system (9)− (11) asymptotically converges to zero,
and a stationary flow is established in the cargo transportation system, the
value of which is a∆.

Investigation of solutions of the system (9) − (11) for 0 < λ < 1

Let us proceed to the study of the system (9) − (11) in the case when
0 < λ < 1. Consider two cases: λ > µ and λ ≤ µ.

We start with the case λ > µ. It is easy to check that for all 0 < µ < 1 and
µ < λ < 1 the system (9)− (11) has a stationary solution

z0(.) ≡ ∆(1− µ), zi(.) ≡ ∆(1−
µ

λ
), i = 1, ...,m + 1. (16)

Stationary is also any solution of the form

z0(.) ≡ c̃0, 0 ≤ c̃0 < ∆(1− µ), zi(.) ≡ ∆(1−
µ

λ
), i = 1, ...,m + 1. (17)

Numerical experiments have shown that the stationary solution (16) is
asymptotically stable in the domain D̃ ∈ Rm+2, where

D̃ = {x ∈ Rm+2| ∆(1− µ) ≤ x0 ≤ ∆,

∆(1−
µ

λ
) ≤ xi ≤ ∆, i = 1, ...,m + 1}.

Let us go to the description of the nature of the solutions of the system
(9)− (11).
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It was revealed that for any initial values of the system (9)− (11) (value c)
and the parameter µ there exists λ̃1(c, µ), λ̃2(c, µ), µ < λ̃1(c, µ) < λ̃2(c, µ) ≤ 1
such that the solution of the system (9) − (11) is continuous for any value of
the parameter λ from the segment [µ, λ̃2(c, µ)] and is discontinuous for any λ

from the half-interval (λ̃2(c, µ), 1] if λ̃2(c, µ) < 1. Moreover, for any λ from the
segment [µ, λ̃1(c, µ)] it converges to a stationary solution (16) (the first type of
solution), and for any λ from the half-interval (λ̃1(c, µ), λ̃2(c, µ)] converges to
one of the stationary solutions of the form (17) (the second type of solution). In
both cases, a stationary flow is established in the cargo transportation system,
the value of which is µa∆. Values λ̃1(c, µ) and λ̃2(c, µ) are decreasing in both
variables. As with λ = 1 discontinuous solutions will represent the third type
of solution. This type of solution is characterized by the fact that the flow
intensity between some stations changes abruptly.

Finally, we investigate the solution of the system (9)−(11) in the case when
λ ≤ µ. It is easy to check that in this case the system (9)−(11) has a stationary
solution

z0(.) ≡ ∆(1− λ), zi(.) ≡ 0, i = 1, ...,m + 1.

Numerical experiments have shown that this stationary solution is asymp-
totically stable on the whole set of admissible initial values of the system
(9)− (11), i.e. on the set

˜̃
D = {x ∈ Rm+2| 0 ≤ xi ≤ ∆, i = 0, 1, ...,m + 1}.

In this case, a stationary flow is established in the cargo transportation
system, the value of which is λa∆.

So, one more type of solution of the system (9) − (11) (fourth) has been
identified. Note that three types of solutions out of four (except for the third)
combine the following properties: continuity of the solution and convergence
to a certain stationary solution, leading to the establishment of a stationary
flow in the system of cargo transportation. The main thing is the fact that all
three of these types of solutions describe practically realizable modes of cargo
transportation. Recall that discontinuous solutions (the third type of solutions)
generate abrupt changes in the intensity of freight traffic. In practice, such a
cargo transportation regime is extremely difficult to implement.

4. Conclusion

This article examines the model of organization of railway cargo transportation
on the section of the railway network between two node stations. The dynamics
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of flow depending on the intensity of cargo supply to the initial node station
and the rules of cargo movement from one station to another was investigated.
The central point in this rule is the use of station capacity, which is set as the
maximum the possible intensity of cargo reception by the station per unit of
time, depending on its load. This model is set by the system of differential
equations with discontinuous right parts, which has been studied numerically.
As a result of numerical experiments were possible types of solutions of this
system are identified, most of which determine the practically realizable modes
of cargo transportation. Such modes of cargo transportation determine the
dynamics of the flow on a given section of the railway network.
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