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Abstract: In this research, numerical technique based on Hermite wavelets is
established to find the numerical differentiation. Proposed technique is based
on the expansion of unknown function into a series of basis of Hermite wavelets.
Some numerical experiments have been performed to illustrate the accuracy of
the proposed technique.
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1. Introduction

Wavelets theory is a relatively new and emerging area in mathematical research
and is being extensively used as a powerful tool in various science and engineer-
ing disciplines. Wavelets are mathematical functions which have been widely
used in digital signal processing for waveform representation and segmentations,
image compression, time-frequency analysis, quick algorithms for easy imple-
mentations and many other fields of pure and applied mathematics. In the
recent years, the different types of wavelet methods have found their way for
the numerical solution of different kinds of integral equations arising in math-
ematical physics models and many other scientific and engineering problems.
Several numerical techniques based on Haar wavelets have been established for
solving ordinary differential equations, partial differential equations and inte-
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gral equations and are discussed in [1], [2], [3], [4], [5], [6], [7], [13] and [15].
Hermite wavelet based numerical method has been developed for solving bound-
ary value problems in [8]. Hermite collocation method has been established for
solving fractional differential equations in [9]. In [10], Hermite wavelet method
has been developed for accurate solving fractional Jaulent-Miodek equation as-
sociated with energy dependent Schrodinger potential. Numerical solution of
two-dimensional hyperbolic telegraph equation has been established with the
aid of Hermite wavelets in [11]. Bratu’s problem has been solved with the help
of Hermite wavelet approach in [12]. Numerical solution of nonlinear singular
initial value problems by using operational matrices of integration of Hermite
wavelets has been discussed in [14].

The limitations of analytical methods have led the engineers and scientists
to evolve graphical and numerical methods. Graphical methods give results
to a low degree of accuracy whereas numerical methods give high accuracy in
comparison to graphical methods. With the revolution of high speed digital
computers and increasing demand for numerical answers to various problems,
numerical techniques have become indispensible tool in the hands of engineers.
Numerical differentiation is the process of calculating the derivatives of a func-
tion at some particular value of the independent variable by means of a set of
given values of that function. Many numerical techniques have been developed
to find the numerical differentiation such as Newton’s forward and backward
interpolation formula, central formula, Stirling’s formula, etc. The main ob-
jective of this research is to find the numerical differentiation with the help of
Hermite wavelets.

2. Hermite wavelet and its properties

Wavelets constitute a family of functions from dilation and translation of a
single function known as mother wavelet. The continuous variation of dilation
parameter α and translation parameter β, form a family of continuous wavelets
as:

ψα,β(x) = | α |−
1

2ψ
(x− β

α

)

, α, β ∈ R, α 6= 0, (1)

If the dilation and translation parameters are restricted to discrete values by
setting α = α0

−k, β = nβ0α0
−k, α0 > 1, β0 > 0, we obtain the following family

of discrete wavelets:

ψk,n(x) = | α |−
1

2ψ(α0
kx− nβ0), α, β ∈ R, α 6= 0, (2)
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where ψk,n, form a wavelet basis for L2(R). For special case, if α0 = 2 and
β0 = 1, then ψk,n(x) forms an orthonormal basis. Hermite wavelets are defined
as:

ψn,m(x) =







2
k+1
2√
π
Hm(2km− 2n + 1), n−1

2k−1 ≤ x < n
2k−1 ,

0, otherwise,
(3)

where m = 0, 1, 2, 3, ...,M − 1 and n = 1, 2, 3, ..., 2k−1 and k is assumed any
positive integer. Also, Hm are Hermite polynomials of degree m with respect to
weight function W (x) =

√
1− x2 on the real line R and satisfies the following

recurrence relation

Hm+2(x) = 2xHm+1(x)− 2(m+ 1)Hm(x), (4)

where m = 0, 1, 2, ...,, H0(x) = 1 and H1(x) = 2x.

3. Function approximation

Consider any square integrable function u(x) can be expanded in terms of infi-
nite series of Hermite basis functions as:

u(x) =
∞
∑

n=1

∞
∑

m=0

Cn,mψn,m(x), (5)

where Cn,m are constants of this infinite series, known as Hermite wavelet co-
efficients. For numerical approximation the above infinite series is truncated
upto finite terms as:

u(x) =
2k−1

∑

n=1

M−1
∑

m=0

Cn,mψn,m(x) = CTΨ(x), (6)

where C and Ψ are 2k−1M × 1 matrices and are given by

CT = [C1,0, ..., C1,M−1, ..., C2k−1,0, ..., C2k−1 ,M−1] (7)

and

Ψ = [ψ1,0, ..., ψ1,M−1, ..., ψ2k−1 ,0, ..., ψ2k−1,M−1]
T
. (8)
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4. Proposed scheme for numerical differentiation

Suppose we are given the following set of values of y = f(x) for a set of values
of x: i.e.

y(x0) = y0, y(x1) = y1, y(x2) = y2, · · · , y(xn−1) = yn−1. (9)

x x0 x1 · · · xn−1

y = f(x) y0 y1 · · · yn−1

To find the first, second and third derivatives of y at any value of x, consider
the approximation

y(x) =

2k−1

∑

n=1

M−1
∑

m=0

Cn,mψn,m(x). (10)

Using the conditions given in (9), we obtain

y0 = y(x0) =
2k−1

∑

n=1

M−1
∑

m=0

Cn,mψn,m(x0), (11)

y1 = y(x1) =
2k−1

∑

n=1

M−1
∑

m=0

Cn,mψn,m(x1), (12)

...

yn−1 = y(xn−1) =

2k−1
∑

n=1

M−1
∑

m=0

Cn,mψn,m(xn−1). (13)

Solving the above system of n algebraic equations, we obtain the wavelet coef-
ficients. Differentiating (10), three times w.r.t x, we obtain

y′(x) =
2k−1
∑

n=1

M−1
∑

m=0

Cn,mψ
′
n,m(x), (14)

y′′(x) =
2k−1
∑

n=1

M−1
∑

m=0

Cn,mψ
′′
n,m(x), (15)

y′′′(x) =
2k−1

∑

n=1

M−1
∑

m=0

Cn,mψ
′′′
n,m(x), (16)
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...

Substituting the values of wavelet coefficients into (14), (15) and (16), we obtain
the first, second and third derivatives of y.

5. Numerical experiments

In this section, some numerical examples have been performed to illustrate the
accuracy of the proposed technique.

Example 1: Consider the data in Table 1:

x 0 0.2 0.4 0.6 0.8

y = f(x) 1 1.008 1.064 1.216 1.512

Table 1: Data for Example 1.

Using the Newton forward or backward interpolation formula, we obtain
the polynomial y(x) = x3 + 1. Taking k = 1,M = 5 and the approximation is:

y(x) =

4
∑

m=0

C1,mψ1,m(x), (17)

i.e.

y(x) = C1,0ψ1,0(x) + C1,1ψ1,1(x) + · · ·+ C1,4ψ1,4(x), (18)

Substituting x = 0, 0.2, 0.4, 0.6, 0.8 respectively, in (18), we obtain

y(0) = C1,0ψ1,0(0) + C1,1ψ1,1(0) + · · ·+ C1,4ψ1,4(0), (19)

y(0.2) = C1,0ψ1,0(0.2) + C1,1ψ1,1(0.2) + · · ·+ C1,4ψ1,4(0.2), (20)

...

y(0.8) = C1,0ψ1,0(0.8) + C1,1ψ1,1(0.8) + · · ·+ C1,4ψ1,4(0.8). (21)

From (19) - (21), we obtain system of 5 algebraic equations. Solving such a
system of algebraic equations, we obtain wavelet coefficients:

c1,0 = 1.163172839656745e + 000, c1,1 = 2.077094356529901e − 001,

c1,2 = 8.308377426119595e − 002, c1,3 = 1.384729571019938e − 002,
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c1,4 = 1.665334536937735e − 016.

Substituting these wavelet coefficients into (18), we obtain

y(x) = 1.163172839656745.ψ1,0(x) + 0.207709435652990.ψ1,1(x)

+ · · · + 1.665334536937735e − 016.ψ1,4(x). (22)

Differentiating (22), twice w.r.t x, we obtain

y′(x) = 1.163172839656745.ψ′
1,0(x) + 0.207709435652990.ψ′

1,1(x)

+ · · · + 1.665334536937735e − 016.ψ′
1,4(x), (23)

y′′(x) = 1.163172839656745.ψ′′
1,0(x) + 0.207709435652990.ψ′′

1,1(x)

+ · · · + 1.665334536937735e − 016.ψ′′
1,4(x), (24)

x 0 0.2 0.4 0.6 0.8

y′(x)(Hermite) 0 0.12 0.48 1.08 1.92

y′(x)(Exact) 0 0.12 0.48 1.08 1.92

y′′(x)(Hermite) 0 1.20 2.40 3.60 4.80

y′′(x)(Exact) 0 1.20 2.40 3.60 4.80

Table 2: Comparison of Exact and Hermite wavelets solutions of
Example 1.

Results are exactly same as the results obtained with forward or backward
interpolation formulae. Table 2 shows the comparison of exact and Hermite
wavelet solutions of Example 1.

Example 2: Consider the data in Table 3:

x 0 0.15 0.30 0.45 0.60 0.75 0.90

y = f(x) 4 4.4618 4.9499 5.4683 6.0221 6.6170 7.2596

Table 3: Data for Example 2.

Using the Newton forward or backward interpolation formula, we obtain the
polynomial y(x) = ex + 2x + 3. Taking k = 1,M = 7, the wavelet coefficients
are as:
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c1,0 = 5.098825671912350, c1,1 = 0.819973029031273,
c1,2 = 0.046640807118610, c1,3 = 0.003894802545886,
c1,4 = 0.000262763041592, c1,5 = 0.000015829098890,
c1,6 = 0.000021105465188.

x 0 0.15 0.30 0.45 0.60 0.75 0.90
y′(x) 2.9965 3.1628 3.3497 3.5680 3.8223 4.1169 4.4605
(Her.)

y′(x) 3.0000 3.1618 3.3499 3.5683 3.8221 4.1170 4.4596
(Exa.)

y′′(x) 1.0815 1.1604 1.3430 1.5715 1.8237 2.1130 2.4882
(Her.)

y′′(x) 1.0000 1.1618 1.3499 1.5683 1.8221 2.1170 2.4596
(Exa.)

Table 4: Comparison of Exact and Hermite wavelets solutions of
Example 2.

Results are nearly same as the results obtained with forward or backward
interpolation formulae. Table 4 shows the comparison of exact and Hermite
wavelet solutions of first and second derivatives of Example 2.

Example 3: Consider the data given in Table 5:

x 0 0.1 0.2 0.3 0.4 0.5 0.6

y = f(x) 30.13 31.62 32.87 33.64 33.95 33.81 33.24

Table 5: Data for Example 3

Taking k = 1,M = 7. The wavelet coefficients are as:
c1,0 = 31.54582822860697, c1,1 = 2.920821623552001,
c1,2 = 1.618840222204653, c1,3 = 1.793657522458886,
c1,4 = 0.914738891965072, c1,5 = 0.328152059797574,
c1,6 = 0.087146609286698.

Table 6 shows the first and second derivatives of y at different values of x
using Hermite wavelets.
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x 0 0.1 0.2 0.3 0.4 0.5 0.6

y′(x) 13.6 14.5 10.1 5.3 0.8 −3.6 −7.2
(Her.)

y′′(x) 68.4 −30.5 −49.8 −45.5 −44.7 −45.3 −16.3
(Her.)

Table 6: Hermite wavelets solutions of Example 3.

6. Conclusion

From the above numerical data, it is concluded that Hermite wavelet is a power-
ful mathematical tool for computing numerical differentiation. This technique
is also applicable to find higher order derivatives.
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