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Abstract: The mathematical model of the propagation of chemical substances
in the soil that contains a thin clay geobarrier was investigated. The function of
the geobarrier as an integral element of the soil base of waste storage facilities
is the limitation of the spread of harmful substances outside the facility. The
developed mathematical model takes into account: 1) the ideality properties of
the barrier material; 2) the phenomenon of chemical osmosis; 3) the conjugation
conditions account for the dependence of the filtration coefficient, the degree of
ideality, the diffusion coefficient on the concentration of the chemicals. The ne-
cessity to consider such dependencies is substantiated by the review of scientific
publications with the corresponding data of field experiments. The numerical
solution of the corresponding non-linear boundary value problem was found by
the finite element method. The numerical experiments show the significance
of considering chemical osmosis in the prediction calculations of the spread of
harmful chemicals through geobarriers.
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1. Introduction

When liquid inorganic chemical contaminants enter into clay soil, osmotic phe-
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nomena may appear in the porous medium. This is due to the specific properties
of clay soils and the possibility of their action as semi-permeable membranes.
These are membranes that have a rather high permeability not for all but only
for some substances, in particular for solvents. Osmosis is a one-sided diffusion
through a semi-permeable membrane that separates the solution from a pure
solvent or a solution of lower concentration. This phenomenon is explained by
the gravitation of the system to thermodynamic equilibrium and the leveling
of the concentration of the solutions on both sides of the membrane. It is char-
acterized by osmotic pressure that is equal to the excessive external pressure
which must be applied from the side of the solution to stop osmosis [10, 19].
A detailed analysis (164 primary sources) of the research of osmotic effects
in porous media including both theoretical and experimental developments was
performed in [17]. The problems and effects of chemical osmosis, electro-osmosis
and thermal osmosis were revealed. As noted in [5], it is the soils with low per-
meability, which include clay, that can operate as semi-permeable membranes
that generate osmotic flow.

Although much investigation of osmosis for clay soils has been performed,
both in terms of on-site experimental research and predictive mathematical
modeling [28, 29], some aspects have not been taken into account so far. One of
these is osmotic phenomena under the conjugation conditions for thin geosyn-
thetic barriers in the soil base of the storage facilities for household and indus-
trial wastes. As practice shows, clay and geosynthetic barriers are widely used
in the construction of such facilities. A detailed review (a total of 128 primary
sources) of the reports on the use of geosynthetic thin coatings (inclusions)
in waste storage facilities was performed in [9]. The authors note that such
inclusions of geosynthetic clay materials began to be widely used since 1970s.
Their primary function is to restrict the spread of harmful substances from
waste storage facilities to the environment. The use of artificial geosynthetic
bentonite geobarriers in the waste storages was reviewed in [22]. It is noted
that industrial GCL (geosynthetic clay liners) are currently manufactured as
panels of 4.2–5.3 meter width, 30–61 meter length, and 15 to 30 mm thickness.
According to scientific sources, GCLs as finished panels were used for the first
time in 1986.

A review of current technologies and research on the use of improved ben-
tonites as geobarriers for inorganic waste storage was the objective of [23]. They
focused on three characteristics: the filtration coefficient, the effective diffusion
coefficient and the membrane ideality coefficient ω (the chemico-osmotic effi-
ciency coefficient of the membrane). The necessity to improve the properties of
the geosynthetic bentonite geobarriers arises from certain solutions of chemical
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industry waste to which bentonites are still not stable and are weak as function-
ing protective and restraining barriers. Processes of mechanical and chemical
consolidation of clay materials that exhibit the properties of semipermeable
membranes are investigated in [30]. They used a modification of the Darcy law

vu + vπ = −k
∂h

∂z
+ ω

k

γ

∂π

∂z
= −k

∂h

∂z
+ ω

RT

M

k

γ

∂c

∂z
,

where ω is the chemico-osmotic efficiency coefficient of the membrane; M is
the molar mass of the solute; k is the filtration coefficient; π is the osmotic
pressure; R is the universal gas constant; T is the absolute temperature; c is
the concentration of chemicals in the pore fluid. It was also noted that according
to [7]

k = k0

(

n

n0

)3

,

where n is porosity; k0, n0 are the initial values of the filtration coefficient
and of porosity. It should be noted that the issues of chemical and thermal
consolidation of soils taking into account osmotic phenomena were also studied
in [28, 29]. However, the heterogeneity of the environment and the presence of
thin semipermeable inclusions were not considered. For a flow of a chemical
solution we have

qc = (1− ω)vuc+ vπc− nD∗ ∂c

∂z
,

where D∗ is the effective diffusion coefficient including “the tortuosity of porous
media flow paths”. It was shown in [13] for semipermeable clay materials that

D∗ = τ(1− ω)D0,

where D0 is the diffusion coefficient for a solution in the porous liquid; τ is the
tortuosity factor and 0 < τ < 1. According to [12]

τ = nm,

where m is an empirical parameter. Also, numerical experiments were per-
formed and certain numerical parameters of the model were determined in [30].

Chemical osmosis in [19] is defined as the possibility of the movement of
water (solvent) under the influence of salt concentration difference. In this case,
the generalized Darcy law takes the form

q = −k
∂h

∂x
+ ωk

∂πh
∂x

.
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Here k is the filtration coefficient; h is the heads; πh is the osmotic heads, or
πh = π

ρg
= π

γ
, where π is the osmotic pressure. Osmotic pressure is defined as

[3]

π =
RT

vw
ln(aw),

where R is the universal gas constant; T is the temperature; vw is the molar
volume of water; aw is water activity (dimensionless value).

It was experimentally established in [24] that the effective diffusion coeffi-
cient of KCl solution in geosynthetic bentonite geobarriers non-linearly depends
on the value of the input concentration C0 (Table 1). The dependence of the ide-
ality coefficient on C0 is also presented. Obtained experimental results confirm
the possibility of significant mutual effect of the concentration of chemical sub-
stances dissolved in pore water and physico-chemical parameters of the porous
medium.

C0(mM) D × 10−5
(

m2/day
)

ω

20 0.76896 0.37

35 0.93312 0.24

50 1.01088 0.18

100 1.08864 0.11

200 1.08864 0.11

400 1.22688 0

Table 1. Dependence of the effective diffusion coefficient and the ideality
coefficient of geosynthetic geobarrier on the input concentration of KCl [24]

The ratio of the filtration coefficient k0 of the geosynthetic barrier in the
presence of KCl solution of concentration C0 in the pores to the filtration coef-
ficient K0 in pure water was investigated in [14]. The results shown in Table 2
testify to the need to take into account even modest concentrations of chemical
solutions in pores through the change in filtration characteristics of geobarriers.
After all, the filtration coefficient k0 increases 1.65 times faster than K0 with
increasing KCl concentration to C0 = 50mM .

C0 (mM) k0/K0

0 1

10 1.2

20 1.35

30 1.5

40 1.6

50 1.65
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Table 2. Dependence of the filtration coefficient ratio of geosynthetic
geobarrier on the input concentration of KCl [14]

The above research overview outlines existing developments and still out-
standing tasks regarding the spread of pollutants in environments with clay
geobarriers. Particularly, the well-known modifications of the Darcy law can
take into account the ideality properties (coefficient ω) as well as the phenomena
of osmosis for geobarriers. The results of many reports point to the importance
of such tasks in terms of ecology and environmental protection. However, the
results of field experiments show that the filtration coefficient k and the ideality
coefficient ω non-linearly depend both on the concentration of chemicals c and
the humidity θ. Therefore, the corresponding mathematical model of the dis-
tribution of pollutants in an unsaturated medium with thin clay inclusions will
be described by a boundary value problem with non-linear dependence of coef-
ficients on unknown functions. Moreover, in [6] the conjugation conditions were
modified for the presence of osmosis phenomena and for non-linear dependence
of the parameters of thin inclusions on the determinant functions of processes
(concentration of chemical solutions and humidity). However, no studies of the
effect of such dependences on the processes themselves were performed. That
is the objective of this article.

The process of the spread of dissolved substances by diffusion through a soil
mass acting as a limiting geobarrier for the contaminants was considered in [4].
Assuming linear pressure distribution in the pore fluid, the generally non-linear
diffusion equation was reduced to a linear one. Due to this, an analytical solu-
tion to the respective boundary value problem was found. Generally, numerical
methods have to be applied in the case of non-linear problems. The investiga-
tion of the effect of the non-linear dependences k = k (c, θ) and ω = ω(c) as well
as the osmosis phenomenon itself on the spread of pollutants in the environ-
ment with geobarriers requires solving a non-linear boundary value problem for
the systems of differential equations of parabolic type. The complexity of the
problem is determined also by the possibility of occurrence of discontinuities in
solutions.

The application of the finite element method (FEM) to models of hydraulic
fracturing of the formation in a porous medium is described in [15]. The gap and
the jump in the fields of the head is “smoothed out” (reduces to a continuous
case) through the introduction of the concept of “weak rupture”. Algorithmic
and computational aspects of the application of FEM to mathematical models
of hydraulic fracturing in porous media with possible discontinuities in the
solutions are discussed in [20]. Discretization of the two-dimensional problem
utilized finite elements of two types, classic triangular finite elements in the
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sub-regions without cracks, and finite elements of zero “thickness” with triple
nodes in the split itself (one node on one side of the crack, another in the
center of the crack that belongs to a one-dimensional finite element, the third
one on the other side of the crack). In the assumption of small deformations,
the thickness of the crack during the discretization is disregarded. The idea of
triple nodes is the expansion of the idea of dual nodes in the places of possible
discontinuities in the solution [25, 26].

A new approach (according to the authors) to the numerical study of the
process of the propagation of cracks in heterogeneous media which may con-
sist of discrete elements is proposed in [2]. Among the numerical methods,
the attention is focused on FEM, an overview of its existing modifications and
development of new ones. Thus, the scientists consider FEM one of the key
methods for finding approximate solutions of boundary value problems in het-
erogeneous media with inclusions. This is due to the possibility of finding the
most generalized approximate solutions. Given the relative simplicity of imple-
mentation, in this paper we use the approach to numerical solution of this type
of problems that is described in [25, 26].

2. A mathematical model of the problem

Consider a one-dimensional case. The interconnected process of the variation
of the heads and the concentration of a chemical substance in a pore solution
of an unsaturated heterogeneous soil mass in the presence of chemical osmosis
is described by the following boundary-value problem:

β (h)
∂h

∂t
=

∂

∂x

(

k (h, c)
∂h

∂x
− k (h, c)− kc (h, c)

∂c

∂x

)

,

x ∈ Ω1 ∪ Ω2, t > 0; (1)

h(x, t)|x=0 = h0(t), t ≥ 0; (2)

u (x, t)|x=l =

(

−k (h, c)
∂h

∂x
+ k (h, c)− kc (h, c)

∂c

∂x

)∣

∣

∣

∣

x=l

= 0, t ≥ 0; (3)

h(x, 0) = h0(x), x ∈ [0; ξ] ∪ [ξ; l]; (4)

θ(h)
∂c

∂t
=

∂

∂x

(

θ(h)D(h, c)
∂c

∂x

)

− u
∂c

∂x
, x ∈ Ω1 ∪ Ω2, t > 0; (5)

c(x, t)|x=0 = c0(t), t ≥ 0; (6)
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qc(x, t)|x=l = −θ(h)D(h, c)
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0
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Eqs. (1), (5) neglect the internal sources and drains of moisture and chemicals
including mass transfer processes. Here d is the thickness of the thin inclu-
sion; Ω1 = (0; ξ), Ω2 = (ξ; l), 0 < ξ < l; c0 (t), h0 (t), c0 (x), h0 (x) are known
functions; kc and kγc are the osmosis coefficients of the main soil and the fine
inclusion, respectively, with kc = ω (h, c) RT

M
k(h,c)

γ
, kγc = ωγ (h, c) RT

M
kγ(h,c)

γ
, and

ω (h, c), ωγ (h, c) are the chemico-osmotic efficiency coefficients of the mem-
brane. Functions h0(x), c0(x) must be continuous at each of the segments
[0; ξ], [ξ; l]. Eq. (1) is the moisture transfer equation [1, 27]. According to van
Genuchten’s model [27],

θ(h) = θmin +
θmax − θmin

(1 + (−αh)n)m
, k(h) = k0

√
s(1− (1− s

1

m )m)2,

where θ ∈ [θmin; θmax], θmin > 0, θmax ∈ (θmin; 1], n > 1, m = 1 − 1
n
; s =

θ−θmin

θmax−θmin
is relative humidity; k0 is the filtration coefficient (for full saturation

with s = 1 and h = 0). Further,

β(h) =
dθ

dh
= αnm (θmax − θmin) (1 + (−αh)n)−m−1(−αh)n−1.

Also, the filtration coefficient k0 significantly depends on the concentration of
chemicals dissolved in the pore fluid [11, 14].

Conditions (9), (10) are the modified conjugation conditions in the case of
the dependence of the parameters of fine inclusion and its ideality degree on
physico-chemical factors as well as the consideration of chemical osmosis [6].
Here qc is the flow of chemicals through the fine inclusion; [c] = c+ − c− is the
value of the gap in the concentration of chemicals at the inclusion. Since we
place the source of moisture and chemical contaminants on top (x = 0), then
the ideality coefficient is assumed to depend on the concentration of chemicals
and the humidity at x = ξ − 0.
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3. Solving the problem in the area with the inclusion by the finite

element method

Similarly to [25, 26], we introduce a number of definitions and spaces. Let H0

be a space of vector-valued functions {s1(x); s2(x)} each of the components of
which at each of the intervals (0; ξ), (ξ; l) belong to the Sobolev space W 1

2 (Ω)
and acquire zero values at the ends of the segment [0, l] where the boundary
conditions of the first kind are set for the functions h(x, t), c(x, t), respectively.
Let H be a space of functions {v1(x, t); v2(x, t)} each component of which is
square-integrable along with the first derivatives ∂vi

∂t
, ∂vi

∂x
, i = 1, 2 at each of the

intervals (0; ξ), (ξ; l), ∀t ∈ (0;T ], and satisfy the same boundary conditions of
the first kind as the functions h(x, t), c(x, t), respectively. Here T > 0.

Let {s1(x); s2(x)} ∈ H0. Multiplying Eq. (1) and the initial condition (4)
by s1(x), integrating them over the segment [0, l] and taking into account the
conjugation condition (9), we obtain

l
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γ
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,∀t ∈ (0;T ]; (11)

l
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l
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Similarly, from Eqs. (5) and (8)
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+ (1− ω(θ−, c−))
[c] [s2]

d
∫

0

dx
θ(h)Dγ(h,c)

= 0, ∀t ∈ (0;T ]; (13)

l
∫

0

c(x, 0)s2(x)dx =

l
∫

0

c0(x)s2(x)dx,∀t ∈ (0;T ]. (14)

Definition 1. A function {h(x, t); c(x, t)} ∈ H which for any {s1(x); s2(x)} ∈
H0 satisfies the integral relations (11)–(14) is called a generalized solution of
the boundary value problem (1)–(10).

An approximate generalized solution of the boundary value problem (1)–(10)
is sought in the form

h(x, t) =

N
∑

i=1

ai(t)φi1(x), c(x, t) =

N
∑

i=1

bi(t)φi2(x), (15)

where {φi1(x); φi2(x)}, i = 2, N are basis vector-functions of finite-dimensional
subspace M0 ∈ H0 and functions φ11(x), φ12(x) are used for the approximation
of non-uniform boundary conditions of the first kind (2) and (6).

Further, from the weak formulation (11)–(14) of the problem (1)–(10), tak-
ing into account (15), we obtain the Cauchy problem

M11(A,B) · dA
dt

+ L11(A,B) ·A(t) + L12(A,B) ·B(t) = F11(A,B), (16)

M̃1 ·A(0) = F̃1, (17)

M22(A,B) · dB
dt

+ L22(A,B) ·B(t) = F22(A,B), (18)

M̃2 ·B(0) = F̃2, (19)

where A = (ai(t))
N
i=1,A

(0) = (ai(0))
N
i=1,Mkk = (m

(kk)
ij )Ni,j=1,Lkk = (l

(kk)
ij )Ni,j=1,

Fkk = (f
(kk)
i )Ni=1, F̃k = (f̃

(k)
i )Ni=1,M̃k = (m̃

(k)
ij )Ni,j=1, k = 1, 2,L12 = (l

(12)
ij )Ni,j=1;

m
(11)
ij =

l
∫

0

β(ĥ)φi1φj1dx, m̃
(1)
ij =

l
∫

0

φi1φj1dx, f̃
(1)
i =

l
∫

0

h0φi1dx,

l
(11)
ij =

l
∫

0

k(ĥ, ĉ)
dφi1

dx

dφj1

dx
dx+

[φi1]
[

φj1

]

d
∫

0

dx

kγ(ĥ,ĉ)

,
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l
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0
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+(1− ω(θ−, c−))
[φi2]

[

φj2

]

d
∫

0

dx

θ(h)Dγ(ĥ,ĉ)

.

4. Some practical aspects of the finite-element solving of the

problem (1)–(10)

In practice, approximate finding of h(x, t) and c(x, t) utilizes the same net of
finite elements. Then φi1(x), φi2(x), therefore to avoid double indexation, we
denote these basis functions φi(x), i = 1, N . Similar to [25, 26], we cover
[0; ξ] ∪ [ξ; l] with a finite-element grid. There are two finite elements in this
case [xm−1;xm] ∈ [0; ξ] and [xm+1;xm+2] ∈ [ξ; l] such that xm = xm+1 = ξ and
xm ∈ [0; ξ], xm+1 ∈ [ξ; l]. Basis functions φm(x) and φm+1(x) are discontinuous
at x = ξ, i.e.

φm(x)|x=ξ−0 = 1, φm(x)|x=ξ+0 = 0,

φm+1(x)|x=ξ−0 = 0, φm+1(x)|x=ξ+0 = 1.

To simplify, time discretization is performed on a uniform grid with step
τ . The number of steps in time is set as M . To find out B(p+1), we perform
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discretization of the system of non-linear differential equations (18) over time
using a completely implicit linearized difference scheme [16]

M22(A
(p),B(p)) · B

(p+1) −B(p)

τ
+ L22(A

(p),B(p)) ·B(p+1)

= F22(A
(p),B(p)), p = 1, 2, ...

where A(p) = A (tp), B
(p) = B (tp), tp = pτ . After the formation of the linear

system

G ·B(p+1) = F,

where

G =
1

τ
M11(A

(p),B(p)) + L11(A
(p),B(p)),

F =
1

τ
M11(A

(p),B(p)) ·A(p) + F11(A
(p),B(p)),

we must take into account the principal boundary condition – the boundary
condition of the first kind (2). This is accomplished by the following two steps:
1) all elements of the first equation of the linear system, including the free
member, are nullified; 2) the first element of the first equation is set equal to 1,
and the free member is set equal to c(tp+1). The integrals in the formation of
G and F are found by numerical integration. Similarly, A(p+1) is found from
(16) using obtained values B(p+1).

5. Results of numerical experiments

Soil parameters for the numerical experiments are taken from the Hydrus-1D
program [8]. As the main soil, loam with k0 = 0.028m/day, θmin = 0.1,
θmax = 0.38, n = 1.23, α = 2.7 day−1 were considered. As a soil of thin
inclusion, clay with the following parameters was used: kγ0 = 0.0048 m/day,
θmin = 0.07, θmax = 0.36, n = 1.09, α = 0.5 day−1. The values of R =
8.31446261815 J/mol ·K, T = 293.15K(200C), M = 74.5513 · 10–3kg/mol,
γ = 104N/m3 were used. It was assumed that the main soil does not have
osmotic properties, and that its ideality coefficient equals zero.

For the model problem, the layer of soil of l = 3m thickness was considered.
The depth of the inclusion was ξ = 1.5m, and its thickness d = 0.2m. The step
of variable x was 0.005m, the time step τ = 1day. The starting distribution of
heads was h0(x) = –20m. The original concentration of KCl in the chemical
solution was c0(x) = 8mM . The functions in the boundary conditions of the
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first kind at the surface of the soil were h0(t) = 0m, c0(t) = 400mM . The
results of the numerical experiments are presented in Tables 3-5.

Time moment h− h+ [h] c− c+ [c]

t = 180days 0.3685 0.3319 -0.0366 41.82 47.92 -0.9
t = 360days 0.3757 0.3556 -0.0201 94.80 65.91 -28.89
t = 720days 0.3780 0.3674 -0.0106 198.80 151.12 -47.68
t = 1080days 0.3800 0.3800 0 220.94 175.13 -45.81

Table 3. No semi-permeable properties of the clay inclusion (ωγ = 0)

Time moment h− h+ [h] c− c+ [c]

t = 180days 0.3753 0.2651 -0.1102 38.78 20.65 -18.13
t = 360days 0.3800 0.2668 -0.1132 69.92 17.73 -52.19
t = 720days 0.3800 0.2591 -0.1209 116.21 23.24 -92.97
t = 1080days 0.3800 0.3800 0 147.04 29.18 -117.86

Table 4. Consideration of osmosis and the ideality degree dependent on the
KCl concentration

Time moment h− h+ [h] c− c+ [c]

t = 180days 0.3731 0.2896 -0.0835 38.84 20.83 -18.01
t = 360days 0.3761 0.3532 -0.0229 99.45 21.22 -78.23
t = 720days 0.3777 0.3653 -0.0124 219.74 37.38 -182.36
t = 1080days 0.3800 0.3800 0 271.07 48.18 -222.89

Table 5. Consideration only of the KCl concentration-dependent ideality
degree and neglecting osmosis

The salt diffusion coefficient in the main soil was taken as [1]

D1 |u|+ θD2τ2

where D1 is the hydrodynamic dispersion coefficient; D2 is the molecular diffu-
sion coefficient. According to [8, 18]

τ2 =
θ

7

3

θ2max

.
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For numerical experiments, aqueous KCl solution was considered as a chem-
ical substance, with D2 = 1.721952 · 10−5 m2/day [21]. The hydrodynamic dis-
persion coefficient in this model problem was equal to the molecular diffusion
coefficient. The KCl diffusion coefficient in a thin inclusion depended on the
salt concentration according to the data of Table 1.

The results presented in Tables 3-5 show that both the semi-permeability
and the inclusion of osmotic phenomena are essential in the predictive calcula-
tions. For instance, in the absence of the ideality of the geobarrier, the pollution
level beyond the geobarrier after three years is already 175mM and differs from
the level before the geobarrier only by 45mM . When disregarding osmosis (Ta-
ble 5), the pollution level beyond the geobarrier is 48mM which is much less
than the results of the experiment according to Table 3. However, this is almost
twice as high as for the case of the simultaneous consideration of the ideality
degree and chemical osmosis (Table 4). Given that the process is long-term,
the projected amount of contaminants transferred beyond the boundaries of
the waste storage into ground water can vary considerably depending on the
conditions for solving the problem. Therefore, it is important to take into full
account the data of field observations and experiments in the model.

6. Conclusions

Thus, in this paper the mathematical model of the propagation of chemical sub-
stances in the soil that contains a thin clay geobarrier was investigated. The
developed mathematical model takes into account: 1) the ideality properties of
the barrier material; 2) the phenomenon of chemical osmosis; 3) the conjugation
conditions account for the dependence of the filtration coefficient, the degree
of ideality, the diffusion coefficient on the concentration of the chemi-cals. The
numerical solution of the corresponding non-linear boundary value problem was
found by the finite element method. The results of numerical experiments show
that both the semi-permeability and the inclusion of osmotic phenomena are
essential in the predictive calculations. For instance, in the absence of the ideal-
ity of the geobarrier, the pollution level beyond the geobarrier after three years
differs from the level before the geobarrier only by 26%. When disregarding
osmosis, the pollution level beyond the geobarrier differs from the level before
the geobarrier by 463%. For the case of the simultaneous consideration of the
ideality degree and chemical osmosis, the difference is about 400%. The nu-
merical experments show the significance of considering chemical osmosis in the
prediction calculations of the spread of harmful chemicals through geobarriers.
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