WAVE PROPAGATION IN VISCOELASTIC HALF-SPACE
WITH MEMORY FUNCTIONS OF MITTAG-LEFFLER TYPE

Abstract

The problem of one-dimensional non-stationary wave propagation in viscoelastic half space is studied. For the description of the hereditary properties of the viscoelastic medium, several examples of completely monotone relaxation kernels are considered. They are expressed in terms of functions of Mittag-Leffler type, including the recently introduced multinomial Prabhakar type function. Applying Laplace transform in time, some characteristics of the propagation function are discussed, such as non-negativity, monotonicity, propagation speed, presence/absence of wave front, and explicit integral representation of the solution is derived.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 3
Year: 2021

DOI: 10.12732/ijam.v34i3.1

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] T. Atanackovic, S. Konjik, L. Oparnica, D. Zorica, Thermodynamical restrictions and wave propagation for a class of fractional order viscoelastic rods, Abstr. Appl. Anal., 2011 (2011), Art. # 975694-1-32.
  2. [2] T. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes, John Wiley & Sons, London (2014).
  3. [3] T. Atanackovic, S. Pilipovic, D. Selesi, Wave propagation dynamics in a fractional Zener model with stochastic excitation, Fract. Calc. Appl. Anal., 23, No 6 (2020), 1570–1604; DOI:10.1515/fca-2020-0079.
  4. [4] R.L. Bagley, P.J. Torvik, On the fractional calculus model of viscoelastic behavior. J. Rheol., 30 (1986), 137–148.
  5. [5] E. Bazhlekova, Subordination in a class of generalized time-fractional diffusion-wave equations, Fract. Calc. Appl. Anal., 21, No 4 (2018), 869– 900; DOI:10.1515/fca-2018-0048.
  6. [6] E. Bazhlekova, Completely monotone multinomial Mittag-Leffler type functions and diffusion equations with multiple time-derivatives, Fract. Calc. Appl. Anal., 24, No 1 (2021), 88–111; DOI:10.1515/fca-2021-0005.
  7. [7] E. Bazhlekova, I. Bazhlekov, Complete monotonicity of the relaxation moduli of distributed-order fractional Zener model, AIP Conf. Proc., 2048 (2018), Art. # 050008.
  8. [8] A. Fernandez, C. K¨urt, M. ¨Ozarslan, A naturally emerging bivariate Mittag-Leffler function and associated fractional calculus operators, Comp. Appl. Math., 39 (2020), Art. # 200.
  9. [9] R. Garrappa, F. Mainardi, G. Maione, Models of dielectric relaxation based on completely monotone functions, Fract. Calc. Appl. Anal., 19, No 5 (2016), 1105–1160; DOI:10.1515/fca-2016-0060. WAVE PROPAGATION IN VISCOELASTIC HALF-SPACE... 439
  10. [10] A. Giusti, I. Colombaro, R. Garra, R. Garrappa, F. Polito, M. Popolizio, F. Mainardi, A practical guide to Prabhakar fractional calculus, Fract. Calc. Appl. Anal., 23, No 1 (2020), 9–54; DOI:10.1515/fca-2020-0002.
  11. [11] R. Gorenflo, A. Kilbas, F. Mainardi, S. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, 2nd Ed., Springer, Berlin-Heidelberg (2020).
  12. [12] G. Gripenberg, S.O. Londen, O.J. Staffans, Volterra Integral and Func- tional Equations, Cambridge University Press, Cambridge (1990).
  13. [13] A. Hanyga, Wave propagation in linear viscoelastic media with completely monotonic relaxation moduli, Wave Motion, 50 (2013), 909-928.
  14. [14] V. Kiryakova, Unified approach to fractional calculus images of special functions - a survey, Mathematics, 8, No 12 (2020), Art. # 2260; DOI:10.3390/math8122260.
  15. [15] V. Kiryakova, A guide to special functions in fractional calculus, Mathe- matics, 9, No 1 (2021), Art. # 106; DOI:10.3390/math9010106.
  16. [16] E.A. Korovaytseva, S.G. Pshenichnov, D.V. Tarlakovskii, Propagation of one-dimensional non-stationary waves in viscoelastic half space, Lobachevskii Journal of Mathematics, 38 (2017), 827–832.
  17. [17] E.A. Korovaytseva, S.G. Pshenichnov, D.V. Tarlakovskii, Analytical solution of non-stationary waves propagation in viscoelastic layer problem, Lobachevskii J. of Mathematics, 40 (2019), 2084–2089.
  18. [18] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London (2010).
  19. [19] F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity, Fract. Calc. Appl. Anal., 15, No 4 (2012), 712–717; DOI:10.2478/s13540-012-0048-6.
  20. [20] F. Mainardi, G. Spada, Creep, relaxation and viscosity properties for basic fractional models in rheology, Eur. Phys. J. Special Topics, 193 (2011), 133–160.
  21. [21] J. Paneva-Konovska, V. Kiryakova, On the multi-index Mittag-Leffler functions and their Mellin transforms. Int. J. Appl. Math. 33, No 4 (2020), 549–571; DOI:10.12732/ijam.v33i4.1. 440 E. Bazhlekova, S. Pshenichnov
  22. [22] J. Pr¨uss, Evolutionary Integral Equations and Applications, Birkh¨auser, Basel-Boston-Berlin (1993).
  23. [23] T.R. Prabhakar, A singular integral equation with a generalized Mittag– Leffler function in the kernel, Yokohama Math. J., 19, No 1 (1971), 7–15.
  24. [24] Yu.N. Rabotnov, Equilibrium of an elastic medium with after effect, Prikl. Matem. i Mekh. (PMM), 12, No 1 (1948), 81–91 (in Russian).
  25. [25] Yu.A. Rossikhin, M.V. Shitikova, Analysis of the viscoelastic rod dynamics via models involving fractional derivatives or operators of two different orders, Shock Vib. Digest 36, No 1 (2004), 3–26.
  26. [26] Yu.A. Rossikhin, M.V. Shitikova, Comparative analysis of viscoelastic models involving fractional derivatives of different orders, Fract. Calc. Appl. Anal., 10, No 2 (2007), 111–121.
  27. [27] Yu.A. Rossikhin, M.V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Appl. Mech. Rev. 63 (2010), Art. # 010801-1-25.
  28. [28] R. Schilling, R. Song, Z. Vondraˇcek, Bernstein Functions: Theory and Applications, De Gruyter, Berlin (2010).