WAVE PROPAGATION IN VISCOELASTIC HALF-SPACE
WITH MEMORY FUNCTIONS OF MITTAG-LEFFLER TYPE
Emilia Bazhlekova1, Sergey Pshenichnov2 1Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 8, Sofia - 1113, BULGARIA 2Institute of Mechanics
Lomonosov Moscow State University
Michurinsky Prosp. 1, Moscow - 119192, RUSSIA
The problem of one-dimensional non-stationary wave propagation in viscoelastic half space is studied. For the description of the hereditary properties of the viscoelastic medium, several examples of completely monotone relaxation kernels are considered. They are expressed in terms of functions of Mittag-Leffler type, including the recently introduced multinomial Prabhakar type function. Applying Laplace transform in time, some characteristics of the propagation function are discussed, such as non-negativity, monotonicity, propagation speed, presence/absence of wave front, and explicit integral representation of the solution is derived.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] T. Atanackovic, S. Konjik, L. Oparnica, D. Zorica, Thermodynamical restrictions
and wave propagation for a class of fractional order viscoelastic
rods, Abstr. Appl. Anal., 2011 (2011), Art. # 975694-1-32.
[2] T. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional Calculus
with Applications in Mechanics: Vibrations and Diffusion Processes, John
Wiley & Sons, London (2014).
[3] T. Atanackovic, S. Pilipovic, D. Selesi, Wave propagation dynamics in a
fractional Zener model with stochastic excitation, Fract. Calc. Appl. Anal.,
23, No 6 (2020), 1570–1604; DOI:10.1515/fca-2020-0079.
[4] R.L. Bagley, P.J. Torvik, On the fractional calculus model of viscoelastic
behavior. J. Rheol., 30 (1986), 137–148.
[5] E. Bazhlekova, Subordination in a class of generalized time-fractional
diffusion-wave equations, Fract. Calc. Appl. Anal., 21, No 4 (2018), 869–
900; DOI:10.1515/fca-2018-0048.
[6] E. Bazhlekova, Completely monotone multinomial Mittag-Leffler type
functions and diffusion equations with multiple time-derivatives, Fract.
Calc. Appl. Anal., 24, No 1 (2021), 88–111; DOI:10.1515/fca-2021-0005.
[7] E. Bazhlekova, I. Bazhlekov, Complete monotonicity of the relaxation moduli
of distributed-order fractional Zener model, AIP Conf. Proc., 2048
(2018), Art. # 050008.
[8] A. Fernandez, C. K¨urt, M. ¨Ozarslan, A naturally emerging bivariate
Mittag-Leffler function and associated fractional calculus operators, Comp.
Appl. Math., 39 (2020), Art. # 200.
[9] R. Garrappa, F. Mainardi, G. Maione, Models of dielectric relaxation based
on completely monotone functions, Fract. Calc. Appl. Anal., 19, No 5
(2016), 1105–1160; DOI:10.1515/fca-2016-0060.
WAVE PROPAGATION IN VISCOELASTIC HALF-SPACE... 439
[10] A. Giusti, I. Colombaro, R. Garra, R. Garrappa, F. Polito, M. Popolizio, F.
Mainardi, A practical guide to Prabhakar fractional calculus, Fract. Calc.
Appl. Anal., 23, No 1 (2020), 9–54; DOI:10.1515/fca-2020-0002.
[11] R. Gorenflo, A. Kilbas, F. Mainardi, S. Rogosin, Mittag-Leffler Functions,
Related Topics and Applications, 2nd Ed., Springer, Berlin-Heidelberg
(2020).
[12] G. Gripenberg, S.O. Londen, O.J. Staffans, Volterra Integral and Func-
tional Equations, Cambridge University Press, Cambridge (1990).
[13] A. Hanyga, Wave propagation in linear viscoelastic media with completely
monotonic relaxation moduli, Wave Motion, 50 (2013), 909-928.
[14] V. Kiryakova, Unified approach to fractional calculus images of special
functions - a survey, Mathematics, 8, No 12 (2020), Art. # 2260;
DOI:10.3390/math8122260.
[15] V. Kiryakova, A guide to special functions in fractional calculus, Mathe-
matics, 9, No 1 (2021), Art. # 106; DOI:10.3390/math9010106.
[16] E.A. Korovaytseva, S.G. Pshenichnov, D.V. Tarlakovskii, Propagation
of one-dimensional non-stationary waves in viscoelastic half space,
Lobachevskii Journal of Mathematics, 38 (2017), 827–832.
[17] E.A. Korovaytseva, S.G. Pshenichnov, D.V. Tarlakovskii, Analytical solution
of non-stationary waves propagation in viscoelastic layer problem,
Lobachevskii J. of Mathematics, 40 (2019), 2084–2089.
[18] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial
College Press, London (2010).
[19] F. Mainardi, An historical perspective on fractional calculus in linear
viscoelasticity, Fract. Calc. Appl. Anal., 15, No 4 (2012), 712–717;
DOI:10.2478/s13540-012-0048-6.
[20] F. Mainardi, G. Spada, Creep, relaxation and viscosity properties for basic
fractional models in rheology, Eur. Phys. J. Special Topics, 193 (2011),
133–160.
[21] J. Paneva-Konovska, V. Kiryakova, On the multi-index Mittag-Leffler functions
and their Mellin transforms. Int. J. Appl. Math. 33, No 4 (2020),
549–571; DOI:10.12732/ijam.v33i4.1.
440 E. Bazhlekova, S. Pshenichnov
[22] J. Pr¨uss, Evolutionary Integral Equations and Applications, Birkh¨auser,
Basel-Boston-Berlin (1993).
[23] T.R. Prabhakar, A singular integral equation with a generalized Mittag–
Leffler function in the kernel, Yokohama Math. J., 19, No 1 (1971),
7–15.
[24] Yu.N. Rabotnov, Equilibrium of an elastic medium with after effect, Prikl.
Matem. i Mekh. (PMM), 12, No 1 (1948), 81–91 (in Russian).
[25] Yu.A. Rossikhin, M.V. Shitikova, Analysis of the viscoelastic rod dynamics
via models involving fractional derivatives or operators of two different
orders, Shock Vib. Digest 36, No 1 (2004), 3–26.
[26] Yu.A. Rossikhin, M.V. Shitikova, Comparative analysis of viscoelastic
models involving fractional derivatives of different orders, Fract. Calc.
Appl. Anal., 10, No 2 (2007), 111–121.
[27] Yu.A. Rossikhin, M.V. Shitikova, Application of fractional calculus for
dynamic problems of solid mechanics: Novel trends and recent results.
Appl. Mech. Rev. 63 (2010), Art. # 010801-1-25.
[28] R. Schilling, R. Song, Z. Vondraˇcek, Bernstein Functions: Theory and
Applications, De Gruyter, Berlin (2010).