
International Journal of Applied Mathematics
————————————————————–
Volume 34 No. 3 2021, 555-574
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v34i3.10

AN ALTERNATIVE SMOOTHNESS MEASURE

FORMULATION OF TARGETED ENO SCHEMES

FOR COMPRESSIBLE FLOW SIMULATION

Indra Wibisono1, Engkos A. Kosasih2, Yanuar3 §

1,2,3 Department of Mechanical Engineering
Universitas Indonesia

16424 Depok, Jawa Barat, INDONESIA

Abstract: In this paper, we propose an alternative smoothness measure for-
mulation using power p = 2 of ratio τK

βk,r
for TENO schemes. The spectral

properties of the alternative scheme suggest comparable dissipation and dis-
persion with the original five-point TENO schemes. The advantage of this
alternative scheme is a more distinct scale separation at a high wavenumber.
Our numerical experiments reveal that the resolution in one-dimensional prob-
lems is quite similar to the original five-point TENO scheme. Despite this, the
resolution in two-dimensional problems gives an alternative fine-scale structure.
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1. Introduction

In recent decades, studies on high-order schemes for computational physics have
been yielding remarkable results. These schemes have been designed to work
efficiently within a multiscale structure and also to cope with discontinuous
problems [1]. Moreover, due to the independence of the schemes from the prob-
lem set, they can have broad implementations, for example, for computational
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fluid dynamics, solid mechanics, and acoustics. The development of high-order
schemes is also compatible with the available hardware today.

The origin of one of the most successful high-order schemes, which is known
as the weighted essentially non-oscillatory (WENO) scheme, has been discussed
in classical papers [1, 2, 3]. The capacity of WENO to resolve discontinuities
alongside its essentially non-oscillatory (ENO) properties, makes it a reliable
high-order numerical scheme, the essential factor of WENO that has been the fo-
cus of much research. The improvements have been yielding more accurate per-
formance [4, 5, 6], computational efficiency [7, 8, 9], and robustness [10, 11, 12].
Most of WENO’s performance depends on the construction of nonlinear weights
and their smoothness measurement. The WENO-Z scheme of Borges et al.
[5] resolve the convergence near critical points by measuring full-point stencil
smoothness, commonly known as the global reference smoothness indicator; it
is also assigned to a new technique of constructing the nonlinear weights. Later,
Hu et al. [13] developed a sixth-order WENO central-upwind (WENO-CU6)
scheme. New weighting strategy of WENO-CU6 allowed a smooth transition
between central and upwind schemes, yielding a less-dissipative scheme. Sub-
sequently, Hu et al. [14] modified WENO-CU6 for implicit large-eddy simula-
tions (ILES) by setting a higher integer power to WENO weights. As a result,
their proposed scheme provided better scale-separations but generated spurious
waves at a particular wavenumber [15].

In their design of targeted ENO (TENO) schemes, Fu et al. [16] proposed a
new perspective of constructing nonlinear weights. TENO follows the ENO-like
stencil selections, meaning the complete removal of the discontinuous stencil
with a specific strength. The nature of TENO is different from the classical
WENO scheme; for example, fifth-order TENO schemes can automatically de-
generate to third-order ones when crossing discontinuity. This new approach
ameliorated scale-separations by isolating discontinuity [14]. Through the anal-
ysis of approximate dispersion relation (ADR) (see Jia et al. [17]), TENO
schemes can recover linear background schemes in wider wavenumbers com-
pared with classical WENO schemes. As a result, TENO schemes yield better
dispersion with low numerical dissipation.

TENO schemes of Fu et al. [16] adopted the WENO-Z smoothness mea-
sure when the power of τK

βk,r
was set to 1. WENO-Z with a high power of τK

βk,r
,

produces dissipative results in the discontinuous region. However, the results
are different if it is applied to TENO schemes, mainly due to the indirect use
of measured smoothness. In this paper, we propose an alternative formulation
using a different power of proportion τK

βk,r
for TENO schemes. We demonstrate

the capability of the alternative scheme to solve Euler equations of gas dynam-
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ics. Furthermore, we compare the results with TENO schemes of Fu et al. [16]
in terms of numerical accuracy and fine-scale resolutions.

The remainder of this paper is organized as follows. In Section 2, we review
WENO-Z and TENO schemes. The alternative smoothness measurement of the
TENO scheme and the analysis of approximate dispersion relation are discussed
in Section 3. Several tests in one- and two-dimensional problems are conducted
and presented in Section 4. Finally, the conclusions are provided in Section 5.

2. Review of WENO-Z and TENO schemes

First, we consider the hyperbolic conservation law

∂u

∂t
+

∂

∂x
f(u) = 0, (1)

where u denotes the conserved variable, and f denotes the physical flux. Con-
sider computational cell Ii = [xi−1/2, xi+1/2] and uniform grid spacing ∆x. The
semi-discrete form of (1) by means of the finite-volume method is represented
as

dūi(t)

dt
≃ −

1

∆x

(

f̂
i+

1
2
− f̂

i−1
2

)

, (2)

where

ū =
1

∆x

∫

Ii

u(ξ, t)dξ (3)

and f̂i±1/2 denotes the numerical flux at cell interface xi±1/2. Flux f̂i+1/2 is
evaluated by the exact or approximate Riemann solver

f̂i+1/2 = H(u−
i+

1
2

, u+
i+

1
2

), (4)

where u−i+1/2 and u+i+1/2 denote the left and right interpolated values of the
conserved variable at cell interface xi+1/2. The interpolated values are evaluated
by WENO/TENO schemes to achieve high-order accuracy in the smooth region
and give non-oscillatory behavior.

2.1. Fifth-order WENO-Z schemes

WENO schemes achieve high-order approximation by combining the lower or-
der polynomials. In the fifth-order version (r = 3), three three-point stencils
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{S0, S1, S2} are used to construct the quadratic polynomial; they are then com-
bined into the fifth-order polynomial in the larger stencil (i.e., S5). The value
of ui+1/2 in terms of cell-averaged quantity can be written as

u
(0)

i+
1
2

= 1
6 (2ūi−2 − 7ūi−1 + 11ūi) , (5a)

u
(1)

i+
1
2

= 1
6 (−ūi−1 + 5ūi + 2ūi+1) , (5b)

u
(2)

i+
1
2

= 1
6 (2ūi + 7ūi+1 − ūi+2) . (5c)

The fifth-order interpolation can be written as

u−
i+

1
2

=
2

∑

k=0

wku
(k)

i+
1
2

. (6)

Given by Borges et al. [5], nonlinear weight wk is defined as

wk =
αk

∑

αk
, αk = dk

(

1 +

(

τK
βk,r + ε

)p)

, (7)

where βk,r denotes the smoothness indicator; τK (K = 2r− 1) denotes the full-
point smoothness indicator, known as the global reference smoothness indicator;
and ε = 10−40 denotes the sensitivity parameter to hold the denominator down
to zero. Optimal weights dk is

{

1
10 ,

6
10 ,

3
10

}

, so they achieve fifth-order accuracy
for sufficiently smooth functions. Typically, the power parameter of WENO-Z
schemes was set to p = 1. According to Borges et al. [5], an increase in the
power ratio of τK

βk,r
would lessen the discontinuous stencil contribution, and yield

more dissipative results. The smoothness indicator definition is given by

βk,r =

r−1
∑

l=1

∫

Ii

∆x2l−1

(

∂l

∂xl
u(k)(x)

)2

dx. (8)

In the actual implementation, the smoothness indicators are expressed in terms
of the cell-averaged value of the conserved quantity, as follows:

β0,3 =
1

4
(ūi−2 − 4ūi−1 + 3ūi)

2 +
13

12
(ūi−2 − 2ūi−1 + ūi)

2, (9a)

β1,3 =
1

4
(3ūi−1 − ūi+1)

2 +
13

12
(ūi−1 − 2ūi + ūi+1)

2, (9b)

β2,3 =
1

4
(3ūi − 4ūi+1 + ūi+2)

2 +
13

12
(ūi − 2ūi+1 + ūi+2)

2. (9c)
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The global reference smoothness indicator is given by

τ5 = |β0,3 − β2,3| = O
(

∆x5
)

. (10)

In the smooth solution, nonlinear weight satisfies wk = dk +O
(

∆x3
)

when the
critical point does not emerge. Even if the critical point is present, WENO-Z
still yield better accuracy than the classical WENO-JS scheme [18].

2.2. Fifth-order TENO schemes

High-order TENO reconstruction uses a different approach to the construc-
tion of their nonlinear weights. The schemes do not directly use the measured
smoothness but assign it to isolate the stencil that has a particular strength of
discontinuity from being used in the reconstruction. When crossing a discon-
tinuity, the schemes automatically degenerate into lower order. This approach
yields more robust, accurate, and improve the scale-separation property. Draw-
ing on Borges et al. [5] and Hu et al. [14], the TENO scheme smoothness
measurement is formulated as follows:

γk =

(

C +
τK

βk,r + ε

)q

. (11)

The integer power is set to q = 6 , and the constant parameter is set to C = 1.
TENO schemes have weaker conditions for the order of τK

βk,r
[16], where it should

satisfy
τK
βk,r

= O(∆xs) , s > 0. (12)

Sixth-order τK is suitable for TENO-family schemes and prefered to achieve
strong scale separation [19]. Thus, sixth-order τK can be constructed:

τK =

∣

∣

∣

∣

βK −
1

6
(β0,3 + β2,3 + 4β1,3)

∣

∣

∣

∣

= O
(

∆x6
)

. (13)

Then, the measured smoothness is normalized as follows:

ϑk =
γk

∑

γk
. (14)

The use of a cutoff function yields the following:

υk =

{

0, ϑk < CT ,

1, otherwise,
(15)
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Figure 1: Approximate dispersion (left) and dissipation (right) of
WENO5-Z and TENO5 schemes.

the normalized smoothness is eliminated if it exceeds the specific threshold of
CT . The final assembled optimal weights are formulated as

wk =
dkυk

∑

dkυk
, (16)

and the final interpolation of the conserved variable at cell interface is performed
using Eq. (6).

3. An alternative smoothness measure formulation of TENO

schemes

Motivated by Borges et al.’s [5] and Fu et al.’s [16] works, we introduce an
alternative smoothness measure formulation for TENO schemes, as follows:

γk =

(

C +

(

τK
βk,r + ε

)p)q

. (17)

We set C = 1, p = 2, q = 3, and sensitivity parameter ε = ∆x4 (refer to Table
3 in Don et al. [20]). For convenience, we denote the power parameters by
“scheme”(p, q), following notation of Eq. (17); however, power parameter q is
not applicable to WENO-Z. Thus, we set CT = 10−5 for TENO schemes.

Figure 1 presents the spectral property of fifth-order WENO-Z and TENO
schemes using approximate dispersion relation (ADR) analysis (consult Jia et
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al. [17] and Pirozzoli et al. [21] for more details). The proposed TENO5(2,3)
scheme yields better spectral property from bothWENO5-Z(1,NA) andWENO5-
Z(2,NA) in almost the entire wavenumber. While TENO5(2,3) spectral prop-
erty is comparable with the result of TENO5(1,6), the only difference is at the
high wavenumber.

4. Numerical results

In this section, we consider the two-dimensional Euler equations:

Ut +Fx +Gy = 0, (18)

where the vector of conservative variables U = (ρ, ρu, ρv, ρE)T . The corre-
sponding fluxes are

F =
[

ρu, ρu2 + p, ρuv, (E + p) u
]T

and
G =

[

ρv, ρvu, ρv2 + p, (E + p) v
]T

for fluxes in x- and y-directions, respectively. Also, ρ, p, u, v and E represent
density, pressure, velocity in the x-direction, velocity in the y-direction, and
total energy, respectively. The equation of state (EOS) is E = p/ (γ − 1) +
1
2ρ

(

u2 + v2
)

, where γ is the specific heat ratio. In this paper, γ = 1.4 un-
less stated otherwise. Flux integration over cell interface is approximated by
a four-point Gauss-Legendre quadrature to ensure that the scheme achieves
maximum order in multidimensional reconstruction [22]. The characteristic
transformation is carried out to minimize spurious oscillation. Flux calculation
is performed using the Harten–Lax–van Leer contact (HLLC) approximate Rie-
mann solver [23]. The resulting time-dependent ordinary differential equations
(ODEs) after spatial discretization are integrated by third-order total varia-
tion diminishing (TVD) Runge-Kutta method [24], with CFL = 0.4 for all
computations.

4.1. One-dimensional accuracy test

We first consider the one-dimensional Euler equation of Eq. (18) by neglecting
the y-component flow. The initial condition is (ρ, u, p) = (1 + 0.2 sin (πx) , 1, 1),
which evolves up to t = 2. The computational domain is [−2, 2], and timestep
∆t is scaled down by ∆x5/3.



562 I. Wibisono, E.A. Kosasih, Yanuar

Table 1: Numerical error and convergence order of tested schemes
in the one-dimensional smooth problem.

N WENO5-Z(1,NA) TENO5(1,6) TENO5(2,3)

L1 Error Order L1 Error Order L1 Error Order

10 3.08E-02 2.79E-02 2.79E-02

20 1.51E-03 4.35 1.20E-03 4.54 1.20E-03 4.54

40 4.33E-05 5.12 4.06E-05 4.89 4.06E-05 4.89

80 1.30E-06 5.06 1.29E-06 4.97 1.29E-06 4.97

160 4.06E-08 5.00 4.06E-08 4.99 4.06E-08 4.99

320 1.27E-09 5.00 1.27E-09 5.00 1.27E-09 5.00

Table 1 presents the L1 error and the convergence order for density. All
tested schemes converge toward the desired order of accuracy, whereas
TENO5(1,6) and TENO5(2,3) yield a smaller dissipation thanWENO5-Z(1,NA)
in the coarse grid.

4.2. One-dimensional shock tube problem

The initial condition of the shock tube problem is given by

(ρ, u, p) =

{

(1, 0, 1), 0 ≤ x < 0.5,

(0.125, 0, 0.1), 0.5 ≤ x ≤ 1,
(19)

and the simulations march up to time t = 0.2.

Figure 2 presents the computed density and velocity profiles at the final
time using the N = 100 cells. All the schemes provide comparable results for
this shock tube problem.

4.3. Interacting blast wave

We consider the interacting blast wave problem with the following initial con-
ditions

(ρ, u, p) =











(1, 0, 1000) , 0 ≤ x < 0.1,

(1, 0, 0.1) , 0.1 ≤ x < 0.9,

(1, 0, 100) , 0.9 ≤ x ≤ 1,

(20)
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Figure 2: Density profile (left) and velocity profile (right) of Sod’s
shock tube problem at t = 0.2.

imposed with reflective boundary conditions on either side. The final time is
t = 0.038 and is discretized using the N = 400 cells. The “exact” solution is
computed employing 2000 cells using the WENO-JS scheme.

The density profile at the final time is presented in Figure 3. Compared
with WENO5-Z(1,NA), both TENO5 schemes improve the peak value and the
valley at x = 0.78 and x = 0.75, respectively, whereas the alternative scheme
TENO5(2,3) yields almost the same result as TENO5(1,6).

4.4. Shock density wave interaction

The interaction of the sine wave with the Mach 3 wave generates discontinuity
along with fine-scale structures. The initial condition of the shock density wave
interaction is given by

(ρ, u, p) =

{

(3.857143, 2.629369, 10.333333) , x < −4,

(1 + εsin (5x) , 0, 1) , x ≥ −4,
(21)

with ε = 0.2. The domain is [−5, 5], and the number of cells is set to N = 300.
The final time is set to t = 1.8.

Figure 4 presents the density profile computed by three different schemes
and an “exact” solution computed employing 2000 points using WENO-JS.
Compared to WENO5-Z(1,NA), all of the TENO5 schemes improve the wave
amplitude due to better scale-separation properties. TENO5(2,3) presents al-
most identical results with TENO5(1,6).
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Figure 3: Solution of the interacting blast wave problem: density
profile at t = 0.038.

4.5. Two-dimensional accuracy test

The initial condition for the two-dimensional accuracy test is

(ρ, u, v, p) = (1 + 0.2 sin(πx), 0.7, 0.3, 1),

and evolves up to t = 2. The computational domain is [−2, 2]× [−2, 2], and as
mentioned before, timestep ∆t is scaled down.

Table 2 presents the L1 error and the convergence order for density. All
tested schemes converge toward the desired order of accuracy, whereas
TENO5(1,6) and TENO5(2,3) yield smaller dissipation than WENO5-Z(1,NA).
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Figure 4: Solution of shock density wave interaction: density profile
at t = 1.8.

4.6. Two-dimensional Riemann problem

We consider the third configuration of Lax et al.[25] with the initial condition
set as

(ρ, u, v, p) =























(1.5, 0, 0, 1.5) , if x > 0.5, y > 0.5,

(0.5323, 1.206, 0, 0.3) , if x < 0.5, y > 0.5,

(0.138, 1.206, 1.206, 0.029) , if x < 0.5, y < 0.5,

(0.5323, 0, 1.206, 0.3) , otherwise.

(22)

The domain is [0, 1] × [0, 1], and the number of cells is set to 720× 720.

Figure 5 presents the results of the two-dimensional Riemann problem at
t = 0.23. The result are quite similar. However, in some areas, TENO schemes
yield better secondary scales than the WENO5-Z(1,NA) scheme. TENO5(2,3)
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Table 2: Numerical error and convergence order of tested schemes
in the two-dimensional smooth problem.

N WENO5-Z(1,NA) TENO5(1,6) TENO5(2,3)

L1 Error Order L1 Error Order L1 Error Order

10 2.92E-02 2.65E-02 2.65E-02

20 1.52E-03 4.26 1.22E-03 4.43 1.22E-03 4.43

40 4.22E-05 5.17 3.96E-05 4.95 3.96E-05 4.95

80 1.21E-06 5.13 1.20E-06 5.04 1.20E-06 5.04

160 3.49E-08 5.11 3.49E-08 5.10 3.49E-08 5.10

320 1.04E-09 5.07 1.04E-09 5.07 1.04E-09 5.07

indicates slightly different flow structures than TENO5(1,6), for example, at
the center of the domain. We further consider the 17th configuration of two-
dimensional Riemann problem [25], with the following initial conditions:

(ρ, u, v, p) =























(1.0, 0,−0.4, 1.0) , if x > 0.5, y > 0.5,

(2.0, 0.0,−0.3, 1.0) , if x < 0.5, y > 0.5,

(1.0625, 0, 0.2145, 0.4) , if x < 0.5, y < 0.5,

(0.5197, 0,−1.1259, 0.4) , if x > 0.5, y < 0.5.

(23)

We set the domain and the number of cells as the previous third configuration
of the two-dimensional Riemann problem simulation, with system evolving up
to t = 0.3.

As presented in Figure 6, TENO schemes give superior small-scale resolution
over WENO5-Z(1,NA). TENO5(2,3) indicates slightly different flow structures
than TENO5(1,6).

4.7. Rayleigh-Taylor instabilities

The problem has the following initial conditions:

(ρ, u, v, p) =

{

(2, 0,−0.025ccos (8πx) , 1 + 2y) , 0 ≤ y < 1/2

(1, 0,−0.025ccos (8πx) , y + 3/2) , 1/2 ≤ y ≤ 1,
(24)
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Figure 5: Density contour of the two-dimensional Riemann problem
of third configuration at t = 0.23. Top left: WENO5-Z(1,NA), top
right: TENO5(1,6), bottom: TENO5(2,3).

where c denotes the sound speed with a specific heat ratio of γ = 5
3 . The

computational domain is [0, 0.25] × [0, 1]. With the reflective wall boundary
conditions in the left and right domains, the upper boundary is enforced to
(ρ, u, v, p) = (1, 0, 0, 2.5), and the bottom boundary is enforced to (ρ, u, v, p) =
(2, 0, 0, 1). The source terms for the third and fourth equations of Eq. (18)
are set to ρ and ρv respectively. The solution is extractedn at a resolution of
128 × 512 at the final time t = 1.95.

As presented in Figure 7, contrary to TENO schemes, WENO5-Z(1,NA)
preserves the flow symmetry. In the overall solution, all TENO schemes yield
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Figure 6: Density contour of the two-dimensional Riemann problem
of the 17th configuration at t = 0.3. Top left: WENO5-Z(1,NA),
top right: TENO5(1,6), bottom: TENO5(2,3).

better fine-scale structures than the WENO5-Z(1,NA). The cap part solution
of TENO5(2,3) gives considerably more symmetrical results than TENO5(1,6).
The resolved vortical structure is interpreted differently in TENO5(1,6) and
TENO5(2,3), although it has almost the same quantity.
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4.8. Double Mach reflection

Finally, we consider the double Mach reflection problem [26] with the following
initial conditions:

(ρ, u, v, p) =

{

(1.4, 0, 0, 1) , if x < 1
6 +

y√
3
,

(8, 7.145,−4.125, 116.8333) , otherwise.
(25)

Mach 10 shock with an incident angle of 60◦ to the x-axis, initially at x = 1
6 ,

moves along the x-direction. The computational domain is set to [0, 4] × [0, 1]
and discretized using the 240 × 960 cells. The bottom boundary at 0 < x < 1

6
is set to the exact post-shock condition and reflective wall boundary condition
for 1

6 < x < 4. Then, the system evolves up to t = 0.2.

As presented in Figure 8, all TENO schemes develop a finer flow struc-
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Figure 8: Density contour of double Mach reflection at t = 0.2. Top:
WENO5-Z(1,NA), middle: TENO5(1,6), bottom: TENO5(2,3).

ture than WENO5-Z(1,NA) at the primary slip line. The use of the Gaussian
quadrature for flux integration suggests a better resolution at the jet of the
primary slip line compared with the result of Fu et al. [27] using the mid-point
rule. Again, compared with TENO5(1,6) we notice a different interpretation of
the fine-scale resolution of TENO5(2,3).
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5. Conclusions

In this paper, we proposed a different smoothness measure formulation for
TENO schemes using the basis of WENO-Z schemes by p = 2 of ratio τK

βk,r
.

Moreover, we conducted extensive numerical experiments in one- and two-
dimensional problems. The resolution in one-dimensional problems is quite
similar to the original five-point TENO5(1,6) scheme. However, the resolution
in two-dimensional problems gives an alternative fine-scale structure. The ad-
vantage of the TENO5(2,3) scheme is a more distinct scale separation at high
wavenumber, despite the dissipation being slightly larger than TENO5(1,6).
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