FIRST ORDER DIFFERENTIAL EQUATION
SUDORDINATION ASSOCIATED WITH CASSINI CURVE

Abstract

We denote $p(z)$ as analytic functions defined on the open unit disk with $p(0)=1$. In this paper, we determined the condition for $\beta$ so that the results hold for the expressions $1+\beta zp'(z)$, $1+\beta zp'(z)/p(z)$ and $1+\beta zp'(z)/p^2(z)$ are subordinate to $\sqrt{1+cz}$.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 3
Year: 2021

DOI: 10.12732/ijam.v34i3.2

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] G.M. Goluzin, On the majorization principle in function theory, Dokl. Akad. Nauk. SSSR, 42 (1935), 647-650.
  2. [2] S.S. Miller, P.T. Mocanu, On some classes of first-order differential subordinations, Michigan Math. J., 32, No 2 (1985), 185-195.
  3. [3] M. Nunokawa, M. Obradovi´c, S. Owa, On criterion for univalency, Proc. Amer. Math. Soc., 106, No 4 (1989), 1035-1037.
  4. [4] R.M. Ali, V. Ravichandran, N. Seenivasagan, Sufficient conditions for Janowski starlikeness, Int. J. Math. Math. Sci., 2007 (2007), Art. ID 62927, 7 pp.
  5. [5] R. Omar, S.A. Halim, Differential subordinations properties of Sok´o l- Stankiewicz starlike functions, Kyungpook Math. J. 53, No 3 (2013), 459- 465.
  6. [6] R. Omar, S.A. Halim, R.W. Ibrahim, Differential subordination properties of certain analytic functions, Int. J. of Math., 21, No 6 (2013), 7 pp.
  7. [7] N.E. Cho, H.J. Lee, J. H. Park, R. Srivastava, Some application of the firstorder differential subordinations, Filomat, 30, No 6 (2016), 1465-1474.
  8. [8] V. Ravichandran, K. Sharma, Sufficient conditions for starlikeness, J. Ko- rean Math. Soc., 52, No 4 (2015), 727-749.
  9. [9] K. Sharma, V. Ravichandran, Applications of subordination theory to starlike functions, Bull. Iranian Math. Soc., 42, No 3 (2016), 761-777.
  10. [10] P. Ahuja, S. Kumar, V. Ravichandran, Application of first order differential subordination for functions with positive real part, Stud. Univ. Babe¸s- Bolyai Math., 63 (2018), 303-311.
  11. [11] J. Sok´o l, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., No 19 (1996), 101-105.
  12. [12] M.K. Aouf, J. Dziok, J. Sok´o l, On a subclass of strongly starlike functions, Appl. Math. Lett., 24 (2011), 27-32.
  13. [13] S. Kumar, V. Ravichandran, A subclass of starlike functions associated with a rational function, Southcast Asian Bull. Math., 40, No 2 (2016), 199-212.
  14. [14] S.S. Miller, P.T. Mocanu, Differential Subordination, Dekker, New York (2000).