FIRST ORDER DIFFERENTIAL EQUATION
SUDORDINATION ASSOCIATED WITH CASSINI CURVE
Andy Liew Pik Hern1, Rashidah Omar2, Aini Janteng3 1,3Faculty of Science and Natural Resources
Universiti Malaysia Sabah
88400 Kota Kinabalu, Sabah, MALAYSIA 2 Faculty of Computer and Mathematical Sciences
Universiti Teknologi Mara Cawangan Sabah
88997 Kota Kinabalu, Sabah, MALAYSIA
We denote as analytic functions defined on the open unit disk with . In this paper, we determined the condition for so that the results hold for the expressions
,
and
are subordinate to .
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] G.M. Goluzin, On the majorization principle in function theory, Dokl.
Akad. Nauk. SSSR, 42 (1935), 647-650.
[2] S.S. Miller, P.T. Mocanu, On some classes of first-order differential subordinations,
Michigan Math. J., 32, No 2 (1985), 185-195.
[3] M. Nunokawa, M. Obradovi´c, S. Owa, On criterion for univalency, Proc.
Amer. Math. Soc., 106, No 4 (1989), 1035-1037.
[4] R.M. Ali, V. Ravichandran, N. Seenivasagan, Sufficient conditions for
Janowski starlikeness, Int. J. Math. Math. Sci., 2007 (2007), Art. ID
62927, 7 pp.
[5] R. Omar, S.A. Halim, Differential subordinations properties of Sok´o l-
Stankiewicz starlike functions, Kyungpook Math. J. 53, No 3 (2013), 459-
465.
[6] R. Omar, S.A. Halim, R.W. Ibrahim, Differential subordination properties
of certain analytic functions, Int. J. of Math., 21, No 6 (2013), 7 pp.
[7] N.E. Cho, H.J. Lee, J. H. Park, R. Srivastava, Some application of the firstorder
differential subordinations, Filomat, 30, No 6 (2016), 1465-1474.
[8] V. Ravichandran, K. Sharma, Sufficient conditions for starlikeness, J. Ko-
rean Math. Soc., 52, No 4 (2015), 727-749.
[9] K. Sharma, V. Ravichandran, Applications of subordination theory to starlike
functions, Bull. Iranian Math. Soc., 42, No 3 (2016), 761-777.
[10] P. Ahuja, S. Kumar, V. Ravichandran, Application of first order differential
subordination for functions with positive real part, Stud. Univ. Babe¸s-
Bolyai Math., 63 (2018), 303-311.
[11] J. Sok´o l, J. Stankiewicz, Radius of convexity of some subclasses of strongly
starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., No 19
(1996), 101-105.
[12] M.K. Aouf, J. Dziok, J. Sok´o l, On a subclass of strongly starlike functions,
Appl. Math. Lett., 24 (2011), 27-32.
[13] S. Kumar, V. Ravichandran, A subclass of starlike functions associated
with a rational function, Southcast Asian Bull. Math., 40, No 2 (2016),
199-212.
[14] S.S. Miller, P.T. Mocanu, Differential Subordination, Dekker, New York
(2000).