THE THREE-PARAMETER BLACK AND SCHOLES PROCESS

Abstract

In this paper, we propose a new study of the Black and Scholes Process (BSP). The main objective is to add a threshold parameter to the Black and Scholes Process. Using Kolmogorov equations, we obtain the probability density function and the moments of the process. Estimators of the parameters are studied by considering discrete sampling of the sample trajectories of the model and then using the maximum likelihood method and the Wicksell method.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 3
Year: 2021

DOI: 10.12732/ijam.v34i3.6

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] J. Aitchison, J.A.C. Brown, The Lognormal Distribution, Cambridge University Press (1980).
  2. [2] A. Arbai, Procesos Estocasticos Lognormales Triparametricos, Thesis Doctoral (1994).
  3. [3] A. Arbai, M. Bouskraoui, Three parameter lognormal multidimensional diffusion process with exogenous factors, ARPN J. of Science and Technology, 8 (2014), 512-515.
  4. [4] A. Bellekbir, A. Arbai, Estimation of the parameters of the threeparameter distribution, International J. of Scientific Engeneering and Applied Science, 2 (2016), 45-54.
  5. [5] F. Black, M. Scholes, The pricing of options and coorporate liabilities, J. of Political Economy, 81 (1973).
  6. [6] A.C. Cohen, B.J. Witten, Estimation in the three-parameter lognormal distribution, J. Amer. Statist. Assoc, 75 (1980), 399-404.
  7. [7] L. Gabet, F. Abergel, Introduction aux math´ematiques financi`eres, Ecole Centrale Paris (2010).
  8. [8] B.M. Hill, The three-parameter lognormal distribution and Bayesian analysis of a point-source epidemis, J. Amer. Statist. Assoc, 58 (1963), 72-84. 518 A. Bellekbir, M. Elmerouani, A. Arbai
  9. [9] R.F. Kappenman, Estimation for the three-parameter Weibull, lognormal and gamma distribution, Computational Statistics & Data Analysis, 3 (1985), 11-23.
  10. [10] J.A. Lambert, Estimation of parameter in the three-parameter lognormal distribution, Australian J. of Statistics, 6 (1964), 29-32.
  11. [11] J.R. Magnus, H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics, John Wiley and Sons (1988).
  12. [12] M. El Merouani, Difusiones con factores ex´ogenos. Aspectos computacionales y aplicaciones economicas, Thesis Doctoral, (1995).
  13. [13] L.M. Ricciardi, On the transformation of diffusion process into Wiener processes, J. of Mathematical Analysis and Application, 54 (1976), 18599.
  14. [14] G. Tintner, J.K. Sengupta, Stochastics Economics, Academic Press (1972).
  15. [15] D.R. Wingo, Fitting three-parameter lognormal models by numerical global optimization - an improved algorithm, Computational Statistics and Data Analysis, 2 (1984), 13-25.
  16. [16] S.D. Wicksell, On logarithmic correlation with an application to the distribution of ages at first marriage, Meddelande fran lunds Astronomiska Observatorium, 84 (1917).