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Abstract: This paper investigates a dynamic model for assessing the population-
level impact of isolation of infectious individuals during the 2015-outbreak of
Ebola virus in Liberia. The model includes demographic effects, latent unde-
tectable and latent detectable individuals. The paper presents different optimal
control strategies associated with isolating infectious symptomatic individuals
in order to control the propagation of the virus.
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1. Introduction

Ebola virus disease is one of the most virulent viral diseases of humans, with
a case fatality ratio estimated between 25 and 90% [1]. It is named after the
Ebola River in the Democratic Republic of the Congo, where it was firstly
discovered in 1976 [2, 3, 4]. Recently, the virus is identified in West Africa
mainly in Liberia, Sierra Leone and Guinea [2, 5]. The virus is transmitted
initially to human by contact with an infected animal’s body fluid. It is most
commonly spread by contact with blood and secretions, either via direct contact
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(through broken skin or mucous membranes in, for example, the eyes, nose, or
mouth) with the infected individual or fluids on clothing or other surfaces, as
well as needles [3, 6, 7, 8]. It is previously known as Ebola hemorrhagic fever.
Early symptoms of Ebola include: fever, headache, joint and muscle aches, sore
throat, and weakness. Later symptoms include diarrhea, vomiting, stomach
pain, hiccups, rashes, bleeding, and organ failure. When Ebola progresses to
external and internal bleeding, it is almost always fatal [9, 10, 11]. The 2015
outbreak in West Africa has caused more than 28000 infections and 11100
deaths by December 2015. The epidemic continued increasing due to socio-
economic disadvantage and shortages in the health systems of the three mainly
affected countries Liberia, Sierra Leone and Guinea [4]. The survival of the virus
in the environment, due to poor hygienic and sanitary conditions, is probably
another source of Ebola infection in these countries [12].

Mathematical models of infectious disease transmission dynamics play an
important role in helping to quantify possible infectious disease control and mit-
igation strategies. Modeling and optimal control theory have a powerful tool for
investigating human infectious diseases, contributing to the understanding of
the dynamics of diseases, providing useful predictions about the potential trans-
mission of the virus and the effectiveness of possible control measures which
can provide valuable information for public health policy makers. Numerous
mathematical modeling studies have been conducted to study the transmis-
sion dynamics and control of infectious diseases using compartmental models
[13, 14]. The inclusion, in an epidemic model, of some practical control strate-
gies (vaccines, treatment, educational campaigns) provides a rational basis for
policies designed to control the spread of the virus [15, 16, 17, 18, 19]. Several
models have been used to investigate how to control more effectively emerging
and re-emerging infectious disease such as smallpox, HIV (Human Immunodefi-
ciency Virus), influenza and SARS (Severe Acute Respiratory Syndrome) using
isolation [20, 21, 22, 23, 24]. The mainly aim of public health policy is to de-
crease these burdens by reducing transmission or metigating severity. Isolation
strategy is one of the most basic public health measure that has historically
been used to combat the spread of human infectious diseases. In this study,
isolation refers to the removal of latent detectable and infectious symptomatic
individuals from the general population. The use of isolation as primary control
strategy presents significant logistical and economic strain on a public health
system’s resources.

The purpose of the current study is to use an advanced compartmental
model for realistically assessing the population-level impact of isolation on the
spread and control of the 2015 Ebola virus outbreak in Liberia. The paper is
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organized as follows. In Section 2 we present the formulation and the basic
analysis of the model that describes the dynamics of Ebola virus by including
demographic effects, latent undetectable and latent detectable compartments
with isolation of infectious individuals. A numerical simulations of full model,
in which we use vital dynamics parameters of Liberia estimated in 2015 is pre-
sented in Section 3. Then, we use the obtained model to discuss, in Section 4,
different control strategies of the propagation of the virus. We end with Sec-
tion 5 of conclusions.

2. Formulation and analysis of the model

The model is an improvement of the SEIR model in which the total popula-
tion is split into four mutually exclusive epidemiological classes: Susceptible
compartment S(¢) which denotes individuals who are susceptible to catch the
virus and so might become infectious if exposed, Exposed compartment E(t)
which denotes the individuals who are infected but the symptoms of the virus
are not yet visible, Infectious compartment I(¢) which denotes infectious indi-
viduals who are suffering the symptoms of Ebola and able to spread the virus
through contact with susceptible classes of individuals, and Recovered com-
partment R(¢) which denotes individuals who have immune to the infection.
As an improvement of the SEIR model, we base our study on a deteministic
ordinary differential equations epidemic model in which the total population
N is divided into six mutually exclusive epidemiological classes: Susceptible
individuals S, latent undetectable individuals E7, latent detectable individuals
FE5, infectious symptomatic individuals I, isolated individuals J, and individ-
uals removed from isolation after recovery R(t) which denotes the removed

compartment. In this model, scueptible individuals become infected and latent

1
M, where [ is

through contacy with infectious individual at the rate
the mean transmission rate per day, and k denotes the relative transmissibility
of isolated individuals to measure the effectiveness of isolation of infectious in-
dividuals. Latent undetectable individuals E enter the latent detectable group
FE» at rate o1, and become infectious symptomatic at rate oo. We assume that
the latent detectable group represent individuals with a viral load above the de-
tection limit of the specific diagnostic test. Infectious individuals are isolated at
the rate # where Recovered individuals are removed from isolation after recov-
ery at the rate 7. Furthermore, each group decreases at the natural death rate
1 where the susceptible group increases at the natural birth rate. A schematic
representation of the flow of individuals between the different classes is shown
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in Figure 1.
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Figure 1: Schematic representation of the flow of individuals between
the different classes.

The model is described by the following system of nonlinear ordinary dif-
ferential equations:

B = sse) () - s
dE, (1) I(t) + kJ (1)

T st (M) — 01440 Eat)

P — o Br (1) ~ (02 + 5+ 1) Ea), "
1

%it) = 09 Ba(t) — (04 v + p) I(t),
%it) = Hf(t) + 5E2(t) — (77‘ + :u) J(t)7
dlz_gt) =yI(t) +wJ(t) — pR(t).

The model is parametrized to the transmission dynamics of Ebola virus in
West Africa using published estimates. The commun parameters estimated in
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previous study of Ebola virus in West Africa are: The mean incubation time

1 1 1
— + — is equal to 7days where — = 4 days and — = 3days [25, 26, 27]. The
o1 09 01 01

1
mean infection time is given by 7= days [28, 29, 27]. The description of the

rest of commun parameters is given in Table 1.

Table 1: Description of commun parameters of the model.

parameters Description values

k Effectiveness of isolation of infectious 0.5
1
— Latent undetectable period 4 days
a1
1
— Latent detectable period 3days
02

1 1

—+ — Mean incubation time 7days

g1 1 g9
7 Mean infection time 5days
0% Rate of recovery fom I to R 0.1
Yr Rate of recovery fom Fs to R 0.2
) Rate of isolation fom FEy to J 0.16

The trasmission rate is estimated in recent study of Ebola virus occuring in
Liberia in 2015, [30]. Furthermore, the 2015 estimation of the total population,
the natural birth and death rates are published on the website of Statistiques
Mondiales (2015), [31]. The description of the transmission rate, the total
population, the natural birth and death rates for Liberia are given in Table 2.

The basic qualitative property of the model 1, with respect to the nonneg-
ativity of solutions, will now be explored.

Lemma 1. Suppose that the initial values S(0), E1(0), E2(0), I1(0), J(0),
R(0) of the model (1) are all nonnegative. Then, the solution of (1) starting
with these initial values will remain nonnegative for all time t > 0.

Proof. The proof for the nonnegativity is by contradiction (see Theorem
A4 of [32]). Suppose that the statement of the lemma (with respect to nonneg-
ativity) does not hold. That is, there is at least one of the six state variables of
the model (1), and a ¢t = ¢* > 0, such that the value of this state variable goes
through 0 at ¢ = t*, and all state variables of the model take nonnegative values
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for 0 <t < t*. For example, consider the state variable is S(t). It can be seen
that the derivative of S(t) is positive if S(t) = 0. Hence, S(¢) cannot decrease
further once it has reached 0. The case of each of the other state variable of
the model can be shown in a similar way. O

Table 2: Demographic effects and ransmission rate in Liberia pub-
lished on the website of Statistiques Mondiales (2015), [31].

parameters Description values
Liberia

A Birth rate 0.03441

I Death rate 0.00969

N Total population 4195666

I3 Transmission rate  0.3906

3. Numerical simulation

In this section, we study the impact of the isolation on Ebola virus during
the 2015 outbreaks occuring in Liberia. In order to provide useful predictions
about the potential transmission of the virus and the effectiveness of isolation,
we study the numerical resolution of the model in three scenarios: (1) isolation
of latent detectable individuals only; (2) isolation of symptomatic infectious
individuals only; (3) isolation of latent detectable and symptomatic infectious
individuals. By comparing between the three scenarios, we can see the impact
of isolation, in each scenario, on all the classes of individuals. The description
of initialization parameters in Liberia [31] is detailed in Table 3.

In order to quantify the impact of isolation and compare between the three
scenarios, Figures 2, 3 and 4 show, respectively, the evolution of infectious, iso-
lated and recovered individuals, along time, in the three scenarios. In Figure
2, the time-dependent curve of infectious symptomatic individuals shows the
peak of the curve of infectious symptomatic individuals, which is less important
in case of isolation of latent detectable and infectious symptomatic individuals
(scenario 3). In fact, the maximum value on the infectious symptomatic curve
I in scenario 3 is 2.569.10° individuals means 0.0612% of the total population,
against 2.769.10° means 0.066% in case of isolation of symptomatic infectious
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Table 3: Description of initialization parameters in Liberia, [31].

Computational parameters Desciption Values
5(0) 0.8+ N  3.3565.10°
E1(0) 0.05%x N  2.0978.10°
E»5(0) 0.1%N  4.1957.1005
10) 0.05%N  2.0978.10°
J(0) 0 0
R(0) 0 0

T T T T T
— 3 Isolation of E2 and |
— A Isolation of |
.
I «10° 7
* % -

X:3.38
Y: 3.628e+05

o,
)§( 3 Y:2.768e+05
9& 25 l.gAAA )SSSS(

I(t)

Figure 2: Evolution of infectious individuals I(t).
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Figure 3: Evolution of isolated individuals J(t).
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Figure 4: Evolution of recovered individuals R(t).
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only (scenario 2) and 3.628.10% means 0.0865% in case of isolation of latent de-
tectable only (scenario 3). The percentage of symptomatic infectious 0.0612%
of the scenario 3 correspond to the isolation of 2.225.10° individuals (0.0530%
of the total of population). The percentage of symptomatic infectious 0.066%
of the scenario 2 correspond to the isolation of 1.702.10% individuals (0.0406%
of the total of population) (see Figure 3). The percentage of symptomatic
infectious 0.0865% of the scenario 1 correspond to the isolation of 8.794.10% in-
dividuals (0.0210% of the total of population) (see Figure 3). Then, as is shown
in Figure 2 and Figure 3, the percentage of symptomatic infectious decreases
by increasing the percentage of isolation. As shown in Figure 2, the impact is
not only on the decreasing of number of infectious, but also in the period of
infection which is the more shorter in the scenario 3. Figure 4 shows that the
number of recovered individuals increases rapidly in case of scenario 3. In fact
the maximum number of recovered in scenario 3 is 6.471.10° aginst 6.343.10°
in scenario 2 and 6.001.10° in scenario 1. Figures 2, 3 and 4 show the effective-
ness of isolation of latent detectable and infectious symptomatic individuals in
curtailing Ebola.

4. Optimal control of the spread of the virus

Epidemiological models have used optimal control techniques, most of which
focus on HIV disease and tuberculosis (TB) [15, 16, 23, 24, 33, 34]. The optimal
control efforts are carried out to limit the spread of the disease, and in some
cases, to prevent the emergence of drug resistance. In this section, we formulate
two strategies of optimal control problems subject to the SFEj FoIJR model (1),
in order to derive the optimal isolation strategies. For each strategy, we study
a specific objective in order to minimize not only the number of symptomatic
infectious individuals or latent detectabe individuals but also the cost of the
isolation program which includes the consumption for every individuals, the
cost of organization and management. The isolation of symptomatic infectious
and latent detectabe individuals has a great importance in countries that do
not have the capacity to defend themselves against the virus.

We compare the result of each strategy with the simulation results studied
in Section 3 for Liberia. The so called Strategy 1, which is described in Sec-
tion 4.1, consists on the control of the virus by minimizing the symptomatic
infectious and isolated individuals with the isolation cost, which includes the
cost of consumption for every individuals, the cost of organization and manage-
ment. Strategy 2 is an improvement of Strategy 1, is given in Section 4.2 and
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consists on the control of the virus by minimizing the symptomatic infectious,
isolated and the latent detectable individuals with the isolation cost.

4.1. Strategy 1

In this section, we present a strategy of control of the virus by introducing
into the model (1) a control u(t) representing the isolation rate at time ¢. The
control u(t) is the fraction of symptomatic infectious individuals being isolated
per unit of time. Then, the mathematical model with control is given by the
following system of nonlinear differential equations:

aSO _ y _ gsin <I(t) +k:J(t)> LS,

Cdt N
dE;t(t) — 55@) (W) — (0’1 + ,U) El(t)y
dE;(t) =01E1(t) — (o2 + 6 + p) Ea(t),
t
dI(t) ?
— = oaBa(t) = (u(t) + v+ p) 1(2),
WU w(t)10) + 5Ba(0) — (3 + ) ),
dljz—it) =I(t) + 7 J(t) — pR(1).

The goal of the strategy is to reduce the symptomatic infectious individuals,
the isolated individuals and the cost of isolation, which includes the cost of
consumption for every individuals, the cost of organization, management and
cooperation of the isolation program. Precisely, the optimal control problem
consists of minimizing the objective functional

s = [ A1)+ 4270 + S0 ar 3

where u(t) is the control variable, which represents the isolation rate at time
t, teng denotes the duration of the isolation program, A; and As are positive
balancing cost factors due to size and importance of the parts of the objective
function. The total cost includes the consumption for every individuals, the
cost of organization, management and cooperation. Hence, the cost function
should be nonlinear. In this paper, a quadratic function is implemented for
measuring the control cost by reference to many papers in epidemic control
[35, 36, 37, 38, 39].
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In the quadratic term of (3), C4 is a positive weight parameter associated
with the control u(t), and the square of the control variable reflects the severity
of the side effects of the vaccination. One has u € U,4, where

Upg = {u : uis measurable, 0 < u(t) < Upmaer < 00, t € [0, tenal}

is the admissible control set, with 4, = 0.9.
4.2. Strategy 2

In this strategy, we study the effect of isolation of latent detectable. Our idea is
based on taking into acount the severity of the virus. In fact, let us recall that
Ebola virus spreads through human-to-human transmission, not only by close
and direct physical contact with infected bodily fluids, but also via exposure
to objects or contaminated environment. The most infectious fluids are blood,
feces, and vomit secretions. However, all body fluids have the capacity to
transmit the virus. Here, we intend to control the propagation of the Ebola
virus by using two control variables into the SFE)FolJR model 1. Then, the
mathematical model with control is given by the following system of nonlinear
differential equations:

B = sse) () - s

d%ﬁ):5&w<ﬂﬁ%?ﬂﬁ>—®1+MEﬂm

@ = UlEl(t) — (0'2 + ul(t) + H) EQ(t)’

dﬂ v
MO _ 0 a(t) — (uslt) + 7+ ) 1),

%it) = ug(t)1(t) + u1(t)Ea(t) — (9 + p) J(1),
§%227u0+%ﬂ0—uMﬂ

The goal of the strategy is to reduce the latent detectable individuals, the symp-
tomatic infectious individuals, the isolated individuals and the cost of isolation,
which includes the cost of consumption for every individuals, the cost of orga-
nization, management and cooperation of the isolation program. Precisely, the
optimal control problem consists of minimizing the objective functional

Cy Cs 4

—ui(t) + us(t)| e, (5)

J@:A%ﬁ&@@+&MHﬂy@+2 -
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subject to the system 1, where u = (uy,us3), with u; representing the isola-
tion control of latent detectable and usy the isolation control of symptomatic
infectious individuals. The Lebesgue measurable control set is defined as

Upa = {u = (u1,u2) : u is measurable, 0 < u;(t), u2(t) < Umax,
t €10, tend)

where umax = 0.9, Co and Cs are a positive weight parameters associated with
the control u; (¢) and ug(t). Here, we choose quadratic terms with respect to the
controls in order to describe the nonlinear behaviour of the cost of implementing
the isolation program. The parameters By, By and Bj are positive balancing
cost factors due to size and importance of the parts of the objective function.
In the objective functional, the terms Bju}/2 and Byu3/2 represents the cost
associated with the isolation program which includes the consumption for every
individuals, the cost of organization, management and cooperation.

4.3. Discussion

In this section we compare between the two strategies and the case without
control, and we discuss the obtained results. In order to compare the optimal
control study of strategy 1 and strategy 2 with the numerical solution of the
model 1 without control, we use here the same parameters, and the same initial
values details in Tables 1, 2 and 3 for the initial number of susceptible, latent
undetectable, latent detectable, symptomatic infectious, isolated and recovered
populations. In Strategy 1, t.,q = 120 days, C7 = 200, A1 =1 and A; = 1. In
Strategy 2, the values of the parameters of the objective function are given by:
Cy =200, C3 =200, By =1, By =1, B3 =1, where t.,q = 120 days.

The same parameters defined in Section 3 were used in the control study of
study. For the numerical solutions of the optimal control problems, we have used
the ACADO solver [40], which is based on a multiple shooting method, includ-
ing automatic differentiation and based ultimately on the semidirect multiple
shooting algorithm of Bock and Pitt [41]. The ACADO solver comes as a self-
contained public domain software environment, written in C4++, for automatic
control and dynamic optimization.

Figures 5, 6, 7 and 8 show respectively the time-dependent curves of latent
detectable, symptomatic infectious, isolated and recovered individuals in case
of control with Strategy 1, control with Strategy 2 and the case without control,
for the study of the population of Liberia. Figure 5 shows that the number of
latent detectable Es decreases more rapidly in case of optimal control under
Strategy 2 than in case of control with Strategy 1 and the case without con-
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trol, during the isolation campaign. In Figure 6, the time-dependent curve of
symptomatic infectious individuals shows that there is no peak of the curve of
infectious individuals in case of control with Strategy 1 and Strategy 2, against
the case without control in which an important peak appears. The same curves
show that the period of infection is shorter in case of control with Strategy 2
than in case of control with strategy 1 which is shorter than the case with-
out control. This shows the efficiency of isolation control with Strategy 1 and
Strategy 2 in controlling the virus. Figure 7 presents the time-dependent curve
of isolated individuals of Liberia. Figure 8 show that the number of recovered
individuals increases more rapidly in case of control with Strategy 2. The num-
ber of recovered increases more rapidly in case of control with Strategy 1 than
the case without control.

Figure 9 gives a representation of the time dependent optimal control vari-
able u(t) for Strategy 1. Figure 10 presents the time dependent optimal controls
u1(t) and ua(t). In the two strategies, control variables stay at the upper bound
during the beginning of the isolation program and start to decrease after. By
comparing between the two optimal controls u;(¢) and ugy(t), in Strategy 2, we
see that the control variable us takes longer time at the upper bound, than the
control uj.

4.5 X10°

—t Strategy 2
— Stvategy 1

4 E 5 Without control| |

60
t [days]

Figure 5: Evolution of individuals in compartment Fs(t) in case of
control with Strategy 1, Strategy 2 and the case without control.
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Figure 6: Evolution of individuals in compartment I(¢) in case of
control with Strategy 1, Strategy 2 and the case without control.
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Figure 7: Evolution of individuals in compartment J(¢) in case of
control with Strategy 1, Strategy 2 and the case without control.

5. Conclusions

We investigated a SE) FolJR model which describes the 2015 Ebola virus out-
break occurred in Liberia taking into account demographic effects, latent unde-
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Figure 8: Evolution of individuals in compartment R(t) in case of
control with Strategy 1, Strategy 2 and the case without control.
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Figure 9: The optimal control u for Strategy 1.

tectable and latent detectable compartments with isolation of infectious individ-
uals. We resolved numerically the model in order to assess the population-level
impact of isolation of symptomatic individuals. It has been shown that isolating
latent detectable and infectious individuals is the most effective in curtailing
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Figure 10: The optimal control variables w; and us for Strategy 2.
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