BOUNDEDNESS OF COMMUTATORS OF AN
OSCILLATORY INTEGRAL OPERATORS
IN VARIABLE EXPONENT MORREY SPACES

Abstract

In this paper first we prove Calderón-Zygmund-type integral inequalities for oscillatory integral operators and their commutators in the modified Morrey spaces with variable exponent $L^{p(\cdot),\lambda}(\Omega)$, where $\Omega \subset R^n$ are unbounded sets.

After that we prove the boundedness of these operators on the spaces $L^{p(\cdot),\lambda}(\Omega)$.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 4
Year: 2021

DOI: 10.12732/ijam.v34i4.11

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] D.R. Adams, A note on Riesz potentials, Duke Math., 42 (1975), 765-778.
  2. [2] A. Almeida, J.J. Hasanov, S.G. Samko, Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. Journal, 15, No 2 (2008), 1-15.
  3. [3] Z.O. Azizova, Hardy operators in the local “complementary” generalized variable exponent weighted Morrey spaces, International Journal of Applied Mathematics, 33, No 4 (2020), 675-684; DOI: 10.12732/ijam.v33i4.11.
  4. [4] R.A. Bandaliyev, V.S. Guliyev, I.G. Mamedov, A.B. Sadigov, The optimal control problem in the processes described by the Goursat problem for a hyperbolic equation in variable exponent Sobolev spaces with dominating mixed derivatives, J. Comput. Appl. Math., 305 (2016), 11-17.
  5. [5] C. Bennett, R. Sharpley, Interpolation of Operators, Ser. Pure and Applied Mathematics, 129, Academic Press, Inc., Boston, MA, 1988.
  6. [6] D. Cruz-Uribe, A. Fiorenza, J.M. Martell, C. Perez, The boundedness of classical operators on variable Lp spaces, Ann. Acad. Scient. Fennicae, Math., 31 (2006), 239-264.
  7. [7] F. Chiarenza, M. Frasca, Morrey spaces and Hardy–Littlewood maximal function, Rend. Math., 7 (1987), 273-279.
  8. [8] L. Diening, P. Harjulehto, H¨ast¨o, and M. Ruˇziˇcka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Lecture Notes in Mathematics, Vol. 2017, Berlin, 2011.
  9. [9] L. Diening and M. R¨u´zi´cka, Calder´on-Zygmund operators on generalized Lebesgue spaces Lp(·) and problems related to fluid dynamics, J. Reine Angew. Math., 563 (2003), 197-220.
  10. [10] L. Diening, P. Hasto, A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, In: “Function Spaces, Differential Operators and Nonlinear Analysis” (Proc. Conference held in Milovy, BohemianMoravian Uplands, May 28-June 2, 2004), Math. Inst. Acad. Sci. Czech Republic (2005), Praha.
  11. [11] D.E. Edmunds, J. Lang, A. Nekvinda, On Lp(x) norms, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 219-225.
  12. [12] L. Ephremidze, V. Kokilashvili, S. Samko, Fractional, maximal and singular operators in variable exponent Lorentz spaces, Frac. Calc. Appl. Anal., 11, No 4 (2008), 407-420.
  13. [13] G. Di Fazio and M. A. Ragusa, Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal., 112 (1993), 241-256.
  14. [14] D. Fan, S. Lu and D. Yang, Boundedness of operators in Morrey spaces on homogeneous spaces and its applications, Acta Math. Sinica (N.S.), 14 (1998), 625-634.
  15. [15] V.S. Guliyev, Local generalized Morrey spaces and singular integrals with rough kernel, Azerb. J. Math., 3, No 2 (2013), 79-94.
  16. [16] V.S. Guliyev, J.J. Hasanov, X.A. Badalov, Maximal and singular integral operators and their commutators on generalized weighted Morrey spaces with variable exponent, Math. Ineq. Appl., 21, No 1 (2018), 41-61.
  17. [17] V.S.Guliyev, J.J. Hasanov, S.G. Samko, Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces, Math. Scand., 107 (2010), 285-304.
  18. [18] S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Mat., 16 (1978), 263-270.
  19. [19] P. H¨ast¨o, Local-to-global results in variable exponent spaces, Math. Res. Letters, 15 (2008).
  20. [20] J.J. Hasanov, A.M. Musayev, Oscillatory integral operators and their commutators in modified weighted Morrey spaces with variable exponent, International Journal of Applied Mathematics 32, No 3 (2019), 521-535; DOI: 10.12732/ijam.v32i3.12.
  21. [21] V. Kokilashvili and A. Meskhi, Boundedness of maximal and singular operators in Morrey spaces with variable exponent, Arm. J. Math. (Electronic) 1, No 1 (2008), 18-28.
  22. [22] V. Kokilashvili, On a progress in the theory of integral operators in weighted Banach function spaces, In: “Function Spaces, Differential Operators and Nonlinear Analysis” (Proc. of the Conference held in Milovy, Bohemian-Moravian Uplands, May 28 - June 2, 2004), Math. Inst. Acad. Sci. Czech Republic, Praha (2005), 152-175.
  23. [23] O. Kovacik and J. Rakosnik, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., 41, No 116 (1991), 4, 592-618.
  24. [24] Kwok-Pun Ho, Singular integral operators, John-Nirenberg inequalities and Tribel-Lizorkin type spaces on weighted Lebesgue spaces with variable exponents, Revista De La Union Matematica Argentina, 57, No 1 (2016), 85-101.
  25. [25] S. Lu, Y. Ding, and D. Yan, Singular Integrals and Related Topics, World Scientific Publishing, Hackensack, NJ, USA, 2007.
  26. [26] S.Z. Lu and Y. Zhang, Criterion on Lp-boundedness for a class of oscillatory singular integrals with rough kernels,Revista Matematica Iberoamericana, 8, No 2 (1992), 201-219.
  27. [27] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126-166.
  28. [28] J. Peetre, On the theory of Lp, spaces, J. Funct. Anal., 4 (1969), 71-87.
  29. [29] M. Ruˇziˇcka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math. 1748, Springer, Berlin, 2000.
  30. [30] S.G. Samko, Differentiation and integration of variable order and the spaces Lp(x), In: Proc. of Intern. Conference “Operator Theory and Complex and Hypercomplex Analysis”, 12-17 December 1994, Mexico City, Mexico, Contemp. Math., 212 (1998), 203-219.
  31. [31] S.G. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators, Integr. Transf. and Spec. Funct., 16, No 5-6 (2005), 461-482.
  32. [32] I.I. Sharapudinov, The topology of the space Lp(t)([0, 1]), Mat. Zametki, 26, No 3-4 (1979), 613-632.
  33. [33] S.G. Shi, Weighted boundedness for commutators of one class of oscillatory integral operators, Journal of Beijing Normal University (Natural Science), 47 (2011), 344-346.
  34. [34] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Math., 29, No 1 (1987), 33-66.