In this paper first we prove Calderón-Zygmund-type integral inequalities for oscillatory integral operators and their commutators in the modified Morrey spaces with variable exponent
, where
are unbounded sets.
After that we prove the boundedness of these operators on the spaces
.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] D.R. Adams, A note on Riesz potentials, Duke Math., 42 (1975), 765-778.
[2] A. Almeida, J.J. Hasanov, S.G. Samko, Maximal and potential operators
in variable exponent Morrey spaces, Georgian Math. Journal, 15, No 2
(2008), 1-15.
[3] Z.O. Azizova, Hardy operators in the local “complementary” generalized
variable exponent weighted Morrey spaces, International Journal of Applied Mathematics, 33, No 4 (2020), 675-684; DOI: 10.12732/ijam.v33i4.11.
[4] R.A. Bandaliyev, V.S. Guliyev, I.G. Mamedov, A.B. Sadigov, The optimal
control problem in the processes described by the Goursat problem for a
hyperbolic equation in variable exponent Sobolev spaces with dominating
mixed derivatives, J. Comput. Appl. Math., 305 (2016), 11-17.
[5] C. Bennett, R. Sharpley, Interpolation of Operators, Ser. Pure and Applied
Mathematics, 129, Academic Press, Inc., Boston, MA, 1988.
[6] D. Cruz-Uribe, A. Fiorenza, J.M. Martell, C. Perez, The boundedness of
classical operators on variable Lp spaces, Ann. Acad. Scient. Fennicae,
Math., 31 (2006), 239-264.
[7] F. Chiarenza, M. Frasca, Morrey spaces and Hardy–Littlewood maximal
function, Rend. Math., 7 (1987), 273-279.
[8] L. Diening, P. Harjulehto, H¨ast¨o, and M. Ruˇziˇcka, Lebesgue and Sobolev
Spaces with Variable Exponents, Springer-Verlag, Lecture Notes in Mathematics,
Vol. 2017, Berlin, 2011.
[9] L. Diening and M. R¨u´zi´cka, Calder´on-Zygmund operators on generalized
Lebesgue spaces Lp(·) and problems related to fluid dynamics, J. Reine
Angew. Math., 563 (2003), 197-220.
[10] L. Diening, P. Hasto, A. Nekvinda, Open problems in variable exponent
Lebesgue and Sobolev spaces, In: “Function Spaces, Differential Operators
and Nonlinear Analysis” (Proc. Conference held in Milovy, BohemianMoravian Uplands, May 28-June 2, 2004), Math. Inst. Acad. Sci. Czech
Republic (2005), Praha.
[11] D.E. Edmunds, J. Lang, A. Nekvinda, On Lp(x) norms, R. Soc. Lond. Proc.
Ser. A Math. Phys. Eng. Sci., 455 (1999), 219-225.
[12] L. Ephremidze, V. Kokilashvili, S. Samko, Fractional, maximal and singular
operators in variable exponent Lorentz spaces, Frac. Calc. Appl. Anal.,
11, No 4 (2008), 407-420.
[13] G. Di Fazio and M. A. Ragusa, Interior estimates in Morrey spaces for
strong solutions to nondivergence form equations with discontinuous coefficients,
J. Funct. Anal., 112 (1993), 241-256.
[14] D. Fan, S. Lu and D. Yang, Boundedness of operators in Morrey spaces
on homogeneous spaces and its applications, Acta Math. Sinica (N.S.), 14
(1998), 625-634.
[15] V.S. Guliyev, Local generalized Morrey spaces and singular integrals with
rough kernel, Azerb. J. Math., 3, No 2 (2013), 79-94.
[16] V.S. Guliyev, J.J. Hasanov, X.A. Badalov, Maximal and singular integral
operators and their commutators on generalized weighted Morrey spaces
with variable exponent, Math. Ineq. Appl., 21, No 1 (2018), 41-61.
[17] V.S.Guliyev, J.J. Hasanov, S.G. Samko, Boundedness of the maximal, potential
and singular operators in the generalized variable exponent Morrey
spaces, Math. Scand., 107 (2010), 285-304.
[18] S. Janson, Mean oscillation and commutators of singular integral operators,
Ark. Mat., 16 (1978), 263-270.
[19] P. H¨ast¨o, Local-to-global results in variable exponent spaces, Math. Res.
Letters, 15 (2008).
[20] J.J. Hasanov, A.M. Musayev, Oscillatory integral operators and their commutators
in modified weighted Morrey spaces with variable exponent, International Journal of Applied Mathematics 32, No 3 (2019), 521-535; DOI:
10.12732/ijam.v32i3.12.
[21] V. Kokilashvili and A. Meskhi, Boundedness of maximal and singular operators
in Morrey spaces with variable exponent, Arm. J. Math. (Electronic)
1, No 1 (2008), 18-28.
[22] V. Kokilashvili, On a progress in the theory of integral operators in
weighted Banach function spaces, In: “Function Spaces, Differential Operators and Nonlinear Analysis” (Proc. of the Conference held in Milovy,
Bohemian-Moravian Uplands, May 28 - June 2, 2004), Math. Inst. Acad.
Sci. Czech Republic, Praha (2005), 152-175.
[23] O. Kovacik and J. Rakosnik, On spaces Lp(x) and Wk,p(x), Czechoslovak
Math. J., 41, No 116 (1991), 4, 592-618.
[24] Kwok-Pun Ho, Singular integral operators, John-Nirenberg inequalities
and Tribel-Lizorkin type spaces on weighted Lebesgue spaces with variable
exponents, Revista De La Union Matematica Argentina, 57, No 1
(2016), 85-101.
[25] S. Lu, Y. Ding, and D. Yan, Singular Integrals and Related Topics, World
Scientific Publishing, Hackensack, NJ, USA, 2007.
[26] S.Z. Lu and Y. Zhang, Criterion on Lp-boundedness for a class of oscillatory
singular integrals with rough kernels,Revista Matematica Iberoamericana,
8, No 2 (1992), 201-219.
[27] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential
equations, Trans. Amer. Math. Soc., 43 (1938), 126-166.
[28] J. Peetre, On the theory of Lp, spaces, J. Funct. Anal., 4 (1969), 71-87.
[29] M. Ruˇziˇcka, Electrorheological Fluids: Modeling and Mathematical Theory,
Lecture Notes in Math. 1748, Springer, Berlin, 2000.
[30] S.G. Samko, Differentiation and integration of variable order and the spaces
Lp(x), In: Proc. of Intern. Conference “Operator Theory and Complex and
Hypercomplex Analysis”, 12-17 December 1994, Mexico City, Mexico, Contemp. Math., 212 (1998), 203-219.
[31] S.G. Samko, On a progress in the theory of Lebesgue spaces with variable
exponent: maximal and singular operators, Integr. Transf. and Spec.
Funct., 16, No 5-6 (2005), 461-482.
[32] I.I. Sharapudinov, The topology of the space Lp(t)([0, 1]), Mat. Zametki,
26, No 3-4 (1979), 613-632.
[33] S.G. Shi, Weighted boundedness for commutators of one class of oscillatory
integral operators, Journal of Beijing Normal University (Natural
Science), 47 (2011), 344-346.
[34] V.V. Zhikov, Averaging of functionals of the calculus of variations and
elasticity theory, Izv. Math., 29, No 1 (1987), 33-66.