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1. Introduction

Wavelet frames have important applications, as do various hybrid systems and
generalizations such as curvelets and shearlets, which are especially important
for analysis in higher dimensions (image or video processing). The shearlets in-
troduces by Labate et al. [10] are frame elements which yield optimally sparse
representations [6]. This shearlet system is based on a simple rigorous mathe-
matical framework which not only provides a more flexible theoretical tool for
the geometric representation of multidimensional data, but is also more natural
for implementations.

We denote Z the set of integers, R is the set of real numbers and C the set
of complex numbers. Shearlets are highly anisotropic representation systems,
which optimally sparsify C2(R2)-functions apart from C2-discontinuity curves.
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Shearlet system obtained by two procedures: One system coming directly from
a group representation of a particular semi-direct product, the so called shear-
let group and equipped with a particularly ’nice’ mathematical structure, but
due to biasedness towards one axis it becomes unattractive for applications
point of view, the other system being adapted to a cone-like partitioning of
the frequency domain by ensuring an equal treatment of all directions. The
main advantages of this system are the ones exhibiting the favorable property
of treating the continuum and digital setting uniformly similar to wavelets, and
therefore, relevant for applications point of view. The importance of shearlets
have been widely acknowledged and since their inception, they have emerged
as one of the most effective frameworks for representing multidimensional data
ranging over the areas of signal and image processing, remote sensing, data
compression and several others (see [1-8], [10], [12], [15]).

The wavelets gave the understanding of many problems in various sciences,
engineering and other disciplines. The n-dimensional continuous wavelet trans-
form is able to describe the local regularity of functions and distribution and
detect the location of singularity points through it decay at fine scale, it does
not provide additional information about the geometry of the set of singulari-
ties. The shearlets provide an alternative approach to the curvelets, and exhibit
some very distinctive features. Similarly to the curvelets, the shearlets are a
multiscale directional system and unlike the curvelets the shearlets form an
affine system. That is, they are generated by dilating and translating one sin-
gle generating function, where the dilation matrix is the product of a parabolic
scaling matrix and a shear matrix. The wavelet transform associated with above
more general dilation groups is called shearlet transform. Similarly to the the-
ory of affine systems, the continuous shearlets are associated with the whole
range of scaling, shear, and translation indices (a, s, t) ∈ R

+ ×R×R
2, whereas

the discrete shearlet systems are associated with a sequence in R
+ ×R×R

2 of
discrete scaling, shear and translation indices.

Definition 1. (Cone-Adapted Shearlet Systems). We use the parabolic
scaling matrices Aa or Ãa, a > 0, and shear matrices Ss, s ∈ R, defined by

Aa =

(

a 0
0

√
a

)

or Ãa =

( √
a 0
0 a

)

and Ss =

(

1 s

0 1

)

,

respectively. We partition the frequency plane into the following four cones
C1 − C4:
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Ci =















(w1, w2) ∈ R
2 : |w1| ≥ 1, |w2| ≤ |w1| : i = 1,

(w1, w2) ∈ R
2 : |w2| ≥ 1, |w1| ≤ |w2| : i = 2,

(w1, w2) ∈ R
2 : |w1| ≤ −1, |w2| ≤ |w1| : i = 3,

(w1, w2) ∈ R
2 : |w2| ≤ −1, |w1| ≤ |w2| : i = 4,















and a centered rectangle

R =
{

(w1, w2) ∈ R
2 : ‖(w1, w2‖∞ < 1

}

.

The rectangle R corresponds to the low frequency content of a signal, which is
customarily represented by translations of some scaling function. Anisotropy
now comes into play when encoding the high frequency content of a signal,
which corresponds to the cones C1 −C4 where the cones C1 and C3 as well as C2
and C4 are treated separately. Since the low frequency part already has been
studied extensively and the horizontal cone C1∪C3 and vertical cone C2∪C4 are
treated similarly, therefore, in this paper our focus will be only on the horizontal
cone.

Definition 2. (Cone-Adapted Regular Discrete Shearlet System). For
some sampling vector c = (c1, c2) ∈ (R+)2, the system generated by a scaling
function φ ∈ L2(R2) and shearlets ϕ, ϕ̃ ∈ L2(R2) is defined by

SH(c;φ,ϕ, ϕ̃) = Φ(c1, φ) ∪Ψ(c, ϕ) ∪ Ψ̃(c, ϕ̃),

where














Φ(c1, φ) =
{

φm = φ(.− c1m) : m ∈ Z
2
}

,

Ψ(c, ϕ) =
{

ϕj,k,m = 2
3j

4 ϕ(S−kA2j .−Mcm) : j ≥ 0, |k| ≤ [2
j

2 ]
}

,

Ψ̃(c, ϕ̃) =
{

ϕ̃j,k,m = 2
3j

4 ϕ̃(ST
−kÃ2j .− M̃cm) : j ≥ 0, |k| ≤ [2

j

2 ]
}

,

and

Mc =

(

c1 0
0 c2

)

, M̃c =

(

c2 0
0 c1

)

,

is known as cone-adapted regular discrete shearlet system.
We set:

Λcone =
{

(j, k,m) : j ≥ 0, |k| ≤ [2
j

2 ],m ∈ Z
2
}

.

Definition 3. (Cone-Adapted Regular Discrete Shearlet Transform). Sim-
ilar to discrete wavelet transform the cone-adapted regular discrete shearlet
transform is defined for some function f ∈ L2(R2) by

SHφ,ϕ,ϕ̃f(m
′, (j.k.m), (j̃ , k̃, m̃)) = (< f, φm′ >,< f, ϕj,k,m >,< f, ϕ̃

j̃,k̃,m̃
>),
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where

SHφ,ϕ,ϕ̃f : Z2 × Λ2
cone → C

3

and

< f, g >=

∫

R2

f(x)g(x)dx, ‖f‖2 =< f, g >
1

2 .

The Fourier transform is the unitary operator that maps f ∈ L2(R2) into
the function f̂ defined by

f̂(w) =

∫

R2

f(x)e−2πi<x,w>dx

when f ∈ L1(R2) ∩ L2(R2) and by the appropriate limit for the general f ∈
L2(R2). The function f̂ is also square integrable. Indeed, Fourier transform
maps L2(R2) one-to-one onto itself and the inverse Fourier transform is defined
by

f̌(x) =

∫

R2

f(w)e2πi<x,w>dw.

Notice that the sampling set
{

(2−j , k2
−j

2 , S
k2

−j
2

A2−jMcm) : j ≥ 0, |k| ∈
{

−[2
j

2 ], . . . , [2
j

2 ]
}}

,

forces a change in the ordering of parabolic scaling and shearing, bearing in
mind this fact, we call new class of irregular parameters.

Now, let us set:

Scone =
{

(a, s, t) : a ∈ (0, 1], s ∈ [−(1 + a
1

2 ), 1 + a
1

2 ], t ∈ R
2
}

.

Definition 4. Let ∆ and Λ, Λ̃ be discrete subsets of R2 and Scone respec-
tively, and let φ ∈ L2(R2) as well as ϕ, ϕ̃ ∈ L2(R2). Then the (cone-adapted)
irregular discrete shearlet system is defined by

SH(∆,Λ, Λ̃, φ, ϕ, ϕ̃) = Φ(∆, φ) ∪Ψ(Λ, ϕ) ∪ Ψ̃(Λ̃, ϕ̃),

where














Φ(∆, φ) = {φt = φ(.− t) : t ∈ ∆} ,
Ψ(Λ, ϕ) =

{

ϕa,s,t = a
−3

4 ϕ(A−1
a S−1

s .− t) : (a, s, t) ∈ Λ
}

,

Ψ̃(Λ̃, ϕ̃) =
{

ϕ̃a,s,t = a
−3

4 ϕ̃(Ã−1
a S−T

s (.− t)) : (a, s, t) ∈ Λ̃
}

.
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Then the associated (Cone-Adapted) Irregular Discrete Shearlet Transform
SHφ,ϕ,ϕ̃(f) : ∆× Λ× Λ̃ → C3 of some function f ∈ L2(R2) is given by

SHφ,ϕ,ϕ̃f(t
′, (a, s, t), (ã, s̃, t̃)) = (< f, φt′ >,< f, ϕa,s,t >,< f, ϕ̃ã,s̃,t̃ >).

From now, we restrict our study on horizontal cone C = C1 ∪ C3 and define

L2(C) =
{

f ∈ L2(R2) : suppf̂ ⊆ C
}

.

Since one main motivation for considering irregular sets of parameters are
stability questions, such a constraint seems very natural.

The feasible set of parameters and feasible shearlet system introduces in [8]
is summarizing as:

Let
{

(aj , sj,k, t
c
j,k,m) : j ≥ 0, k ∈ Kj ,

}

,Kj ⊆ Z, c = (c1, c2) ∈ (R+)2,

{aj}j≥0 ⊂ R
+, {sj,k}j≥0,k∈Kj

⊂ R,
{

tcj,k,m
}

j≥0,k∈Kj,m∈Z2
⊂ R

2,

be an arbitrary discrete set of parameters in Scone.

Definition 5. (Feasible Shearlet System). Let

Λ =
{

(aj, sj,k, t
c
j,k,m) : j ≥ 0, k ∈ Kj ,m ∈ Z

2
}

be a feasible set of parameters

and let ϕ ∈ L2(R2) be a feasible shearlet. Then we call

SH(Λ, ϕ) =

{

ϕj,k,m = a
−3

4

j ϕ(S−skAa−1

j
.−Mcm) : j ≥ 0, k ∈ Kj

}

,

a feasible shearlet system.

2. Shearlet frame

Like the Fourier transform, the wavelet transform has a discrete and a contin-
uous version. For the continuous wavelet transform one has weaker conditions,
especially the orthogonality not necessary for an invertible continuous wavelet
transform. So, it is convenient to focus our attention on Parseval frame (PF)
wavelets rather than on orthonormal wavelets. Similar to the wavelets the
shearlets form a Parseval frame. The Mercedes frame {w1, w2, w3} is a simple

example of a tight frame and after rescaling {u1, u2, u3} , ui = cwi, c = (23 )
1

2 is
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a Parseval frame for R
2. Several constructions of discrete shearlet frames are

already known to date (see [3],[9],[13],[14],[18]).
Like the continuous shearlets, the discrete shearlets constitute a Parseval

frame of the finite Euclidean space L2(C). Recall that for a Hilbert space H a
sequence

{

ϕj,k,m : j ≥ 0, k ∈ Kj,m ∈ Z
2
}

is a frame if and only if there exist
constants 0 < A ≤ B < ∞ that

A‖f‖2H ≤ Σj≥0Σk∈Kj
Σm∈Z2 | < f,ϕj,k,m > |2 ≤ B‖f‖2H

for all f ∈ H. The frame is called tight if A = B and a Parseval frame if
A = B = 1. Thus for Parseval frame we have that

‖f‖2H = Σj≥0Σk∈Kj
Σm∈Z2 | < f,ϕj,k,m > |2

for all f ∈ H, which is equivalent to the reconstruction formula

f = Σj≥0Σk∈Kj
Σm∈Z2c(h, j, k,m)ϕj,k,m, (1)

where c(h, j, k,m) =< f,ϕj,k,m >. The series representation (1) of f is called
shearlet series and analogous to the notion of wavelet coefficients, the c(h, j, k,m)
are the shearlet coefficients.

Moricz and Rhoades [19] gave the following definition for matrix transform
of a sequence.

Definition 6. Let D = (diljk) be a double infinite matrix of real numbers.
Then D-transform of a double sequence x = {xjk} is

Σ∞
j=0Σ

∞
k=0diljkxjk, (2)

which is called D−means or D-transform of the sequence x = {xjk}.
In 1926 Robinson [20] defined the double regular matrix as:
A double matrix D = (diljk) is said to be regular if the following conditions

hold:
(i). limi,l→∞Σ∞

i,l=0diljk = 1,
(ii). limi,l→∞Σ∞

j=0|diljk| = 0, (k = 0, 1, 2, . . . ),
(iii). limi,l→∞Σ∞

k=0|diljk| = 0, (j = 0, 1, 2, . . . ),
(iv). ‖D‖ = supi,l>0Σ

∞
j,k=0|dil| < ∞.

Either of condition (ii) and (iii) implies that limi,l→∞ diljk = 0.

In this paper our main aim is to study the action of double infinite regular
matrix D on f ∈ L2(C) and on its horizontal cone-adapted irregular shearlet
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coefficients. We find the frame bounds for D-transform of f ∈ L2(C) whose
shearlet series expansion is given by (1).

Now we have the following

Theorem 7. Let D = (diljk) be a double nonnegative regular matrix and

SH(Λ, ϕ) be a feasible shearlet system. If

f(x) = Σj∈ZΣk∈Kj
Σm∈Z2 < f,ϕj,k,m > ϕj,k,m

is a horizontal cone-adapted shearlet expansion of f ∈ L2(C) with shearlet

coefficients

c(h, j, k,m) =< f,ϕj,k,m >L2(C)≡< f,ϕj,k,m >=

∫

C
f(x)ϕj,k,m(x)dx,

where

{

ϕj,k,m = a
−3

4

j ϕ(S−skAa−1

j
.−Mcm) : j ≥ 0, k ∈ Kj ,m ∈ Z

2

}

, then the

shearlet frame bounds for D-transform of f ∈ L2(C) is

δ∗‖f‖2 ≤ Σj∈ZΣk∈Kj
Σm∈Z2 | < Df,ϕj,k,m > |2 ≤ δ1‖f‖2

where 0 ≤ δ∗, δ1 < ∞.

Proof. The feasible set of parameters of feasible shearlet {ϕj,k,m} charac-
terize a function f ∈ L2(C) by means of shearlet coefficients < f,ϕj,k,m >

if

< f,ϕj,k,m >=< g,ϕj,k,m >⇔ f = g,

or equivalently,

< f,ϕj,k,m >= 0 ⇔ f = 0,

this characterization is numerically stable if small perturbations in the shearlets
coefficients < f,ϕj,k,m > of f correspond to small perturbations of the function
f in the L2(C)-norm that is the feasible shearlet coefficient sequence of two
functions are close in l2(Z2), the functions themselves are close in L2(C). It
leads to that if

Σj≥0Σk∈Kj
Σm∈Z2 | < Df,ϕj,k,m > |2

is small, then ‖Df‖2 is small.
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In particular, there exists α < ∞ such that

Σj≥0Σk∈Kj
Σm∈Z2 | < Df,ϕj,k,m > |2 ≤ 1 ⇒ ‖Df‖2 < α.

For f ∈ L2(C), define

f̃ = f [Σj≥0Σk∈Kj
Σm∈Z2 | < Df,ϕj,k,m > |2]−1

2 .

Then,

< Df̃, ϕj,k,m >= [Σj≥0Σk∈Kj
Σm∈Z2 | < Df,ϕj,k,m > |2]−1

2 < Df,ϕj,k,m >

or

Σj≥0Σk∈Kj
Σm∈Z2 | < Df̃, ϕj,k,m > |2

= [Σj≥0Σk∈Kj
Σm∈Z2 | < Df,ϕj,k,m > |2]−1Σj≥0Σk∈Kj

Σm∈Z2 | < Df,ϕj,k,m > |2.

It gives

Σj≥0Σk∈Kj
Σm∈Z2 | < Df̃, ϕj,k,m > |2 ≤ 1, ‖Df̃‖2 ≤ α,

or

Σj≥0Σk∈Kj
Σm∈Z2 | < Df,ϕj,k,m > |2 ≥ α−1‖Df‖2.

Since D is regular matrix, it gives

δ∗‖f‖2 = α−1‖D‖2‖f‖2 ≤ Σj≥0Σk∈Kj
Σm∈Z2 | < Df,ϕj,k,m > |2.

Now let f ∈ L2(C). Then

Σj∈ZΣk∈Kj
Σm∈Z2 | < f,ϕj,k,m > |2

= Σj∈ZΣk∈Kj
Σm∈Z2 | < f̂, ϕ̂j,k,m > |2

=Σj≥0Σk∈Kj
Σm∈Z2a

3

2

j |
∫

C
f̂(w)ϕ̂(ST

sk
Aajw)e

2πi<w,Aaj
Ssk

cm>
dw|2.

(3)

Now first we consider the sum over m ∈ Z
2. For this, set Ω = [−1

2 , 12 ]
2.
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Then by change of variables, we have

Σm∈Z2a
3

2

j |
∫

C
f̂(w)ϕ̂(ST

sk
Aajw)e

2πi<w,Aaj
Ssk

cm>
dw|2

=Σm∈Z2

a
−3

2

j

|det(Mc)|
|
∫

R2

f̂(A−1
aj

S−T
sk

M−1
c w)χC(A

−1
aj

S−T
sk

M−1
c w)

× ϕ̂(M−1
c w)e2πi<w,m>dw|2

=Σm∈Z2

a
−3

2

j

|det(Mc)|
|Σs∈Z2

∫

Ω+s

f̂(A−1
aj

S−T
sk

M−1
c w)χC(A

−1
aj

S−T
sk

M−1
c w)

× ϕ̂(M−1
c w)e2πi<w,m>dw|2

=Σm∈Z2

a
−3

2

j

|det(Mc)|
|
∫

Ω
ΩΣs∈Z2 f̂(A−1

aj
S−T
sk

M−1
c (w + s))

× χC(A
−1
aj

S−T
sk

M−1
c (w + s))ϕ̂(M−1

c (w + s))e2πi<w,m>dw|2.

Using the Plancherel theorem, we get

Σm∈Z2a
3

2

j |
∫

C
f̂(w)ϕ̂(ST

sk
Aajw)e

2πi<w,Aaj
Ssk

cm>
dw|2

=
a

−3

2

j

|det(Mc)|

∫

Ω
|Σs∈Z2 f̂(A−1

aj
S−T
sk

M−1
c (w + s))×

χC(A
−1
aj

S−T
sk

M−1
c (w + s))ϕ̂(M−1

c (w + s))|2dw

=
a

−3

2

j

|det(Mc)|

∫

Ω
Σm,s∈Z2 f̂(A−1

aj
S−T
sk

M−1
c (w + s))×

χC(A
−1
aj

S−T
sk

M−1
c (w + s))ϕ̂(M−1

c (w + s))×

f̂(A−1
aj S

−T
sk M−1

c (w +m))ϕ̂(M−1
c (w +m))dw

=
a

−3

2

j

|det(Mc)|
Σs∈Z2

∫

Ω+s

f̂(A−1
aj

S−T
sk

M−1
c w)×

χC(A
−1
aj

S−T
sk

M−1
c w)ϕ̂(M−1

c w)Σs∈Z2 f̂(A−1
aj S

−T
sk M−1

c (w +m− s))×
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ϕ̂(M−1
c (w +m− s))dw

=
a

−3

2

j

|det(Mc)|

∫

R2

Σs∈Z2 f̂(A−1
aj

S−T
sk

M−1
c w)×

χC(A
−1
aj

S−T
sk

M−1
c w)ϕ̂(M−1

c w)f̂(A−1
aj S

−T
sk M−1

c (w +m))×

ϕ̂(M−1
c w)ϕ̂(M−1

c (w +m))dw.

Substituting in (4), we get

Σj∈ZΣk∈Kj
Σm∈Z2 | < f̂, ϕ̂j,k,m > |2

=
1

|det(Mc)|
Σj∈ZΣk∈Kj

∫

C
|f̂(w)|2|ϕ̂(S−T

sk
Aajw)|2dw

+
1

|det(Mc)|
Σj≥0Σk∈Kj

∫

C
Σm∈Z2\{0}f̂(w)×

f̂(w +A−1
aj S

−T
sk M−1

c m)ϕ̂(ST
sk
Aajw)×

ϕ̂(ST
sk
Aajw +M−1

c m)dw = S1 + S2.

(4)

To find a bound on second summation, we apply Cauchy-Schwartz inequality,

|S2| ≤
1

det|Mc|
‖f̂‖2Σm∈Z2\{0}[β(M

−1
c m)β(−M−1

c m)]
1

2 ,

where β : R2 → R is defined by

β(ξ) = ess supΣj≥0Σk∈Kj
|ϕ̂(ST

sk
Aajw)||ϕ̂(ST

sk
Aajw + ξ)|.

Consequently, if we denote

γ =
1

|det(Mc)|

{

ess sup
w∈C

Σj≥0Σk∈Kj
|ϕ̂(ST

sk
Aajw)|2 − β(mm)

}

(5)

and

δ =
1

|det(Mc)|

{

ess inf
w∈C

Σj≥0Σk∈Kj
|ϕ̂(ST

sk
Aajw)|2 + β(mm)

}

, (6)

where β(mm) = Σm∈Z2\{0}[β(M
−1
c m)β(−M−1

c m)]
1

2 , then we obtain

Σj∈ZΣk∈Kj
Σm∈Z2 | < f̂, ϕ̂j,k,m > |2 ≤ δ‖f̂‖2,

or
Σj∈ZΣk∈Kj

Σm∈Z2 | < Df,ϕj,k,m > |2 ≤ δ‖D‖2‖f‖2 = δ1‖f‖2. (7)

Since D is regular matrix. Combining (3) and (8) the proof is complete.
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3. Action of double infinite regular matrix on horizontal

cone-adapted irregular shearlet coefficients

Theorem 8. If c(h, j, k,m) are the horizontal cone-adapted irregular

shearlet coefficients of f ∈ L2(C), that is c(h, j, k,m) =< f,ϕj,k,m >, then the

c∗(h, l, n,m) are the mentioned shearlet coefficients of Df , where c∗(h, l, n,m)
is defined as the D−transform of c(h, l, n,m) by

c∗(h, l, n,m) = Σl≥0Σn∈Kj
Σm∈Z2c(h, l, n,m)‖ϕl,n,m‖2.

Proof. We have

< Df,ϕl,n,m >=

∫

C
Df(x)ϕl,n,m(x)dx

=

∫

C
Σl≥0Σn∈Kj

Σm∈Z2dlnjkc(h, j, k,m)ϕj,k,m(x)ϕl,n,m(x)dx.

Now,

Σl≥0Σn∈Kj
Σm∈Z2 < Df,ϕl,n,m > ϕl,n,m

=Σl≥0Σn∈Kj
Σm∈Z2

∫

C
Σj≥0Σk∈Kj

Σm∈Z2dlnjkc(h, j, k,m)×

ϕj,k,m(x)ϕl,n,m(x)ϕl,n,m(x)dx,

if and only if

γ‖ϕj, k,m‖4‖f̂‖2 ≤ Σl≥0Σn∈Kj
Σm∈Z2 |c(h, l, n,m)|2

≤ δ‖ϕj, k,m‖4‖f̂‖2,
or

c′1‖f‖2 ≤ Σl≥0Σn∈Kj
Σm∈Z2 |c(h, l, n,m)|2 ≤ c′2‖f‖2,

where 0 ≤ c1, c
′
1, c2, c

′
2 < ∞. This completes the proof.

4. Conclusions and applications

In this paper we consider a generalized wavelet transform, namely discrete
shearlet transform and we study the action of double infinite regular matrix
on horizontal cone-adapted irregular shearlet coefficients. The frame bounds
by matrix transform of function whose shearlet series expansion is known also
have been studied. The Cone-Adapted Shearlet System has been used for giving
equal treatment of all directions.
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