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1. Introduction

Undoubtedly, the chaos synchronization and chaos control (CSCC) have been
active research areas in applied mathematics for the past three decades. More
precisely, CSCC focuses on the behaviour exploration of immensely irregular or
disordered nonlinear dynamical systems and plays a significant role in several
fields, for instance, secure communication [17], robotics [18], neural networks
[1], biomedical engineering [21], ecological models [23], finance models [26],
oscillations [4], jerk systems [28], encryption [29], etc. Subsequently, CSCC
have sought significant attention in various research fields.

A significant characteristic of chaotic systems, described as “Butterfly Ef-
fect” is high sensitivity dependence on initial conditions. This property of
chaotic systems was first reported by Lorenz [15] in 1963 while analysing a
weather prediction model. Most importantly, Pecora and Caroll [19] first intro-
duced in 1990 the notion of chaos synchronization. In chaos synchronization
phenomenon, the state trajectories of two or more chaotic/ hyperchaotic sys-
tems are regulated to follow the similar dynamics. In recent years, chaos syn-
chronization of chaotic systems using various control techniques has become a
fascinating and engaging area of study for the researchers and scientists. Many
significant techniques are introduced and studied to control [22, 2, 8] and syn-
chronization [24, 12, 25, 9, 10, 17, 3, 7, 11] of chaos occurring in dynamical
systems.

Specifically, Hubler [6] in 1989 firstly introduced adaptive control method
(ACM) in chaotic systems. Since then, many researches have been conducted
using ACM [13, 8, 10, 11]. Keeping the above discussions in view, our primal
aim in this paper is to study hybrid projective synchronization (HPS) among
identical newly described Hamiltonian chaotic systems [27] based on Hénon-
Heiles model by ACM. Basically, Hénon and Heiles [5] in 1964 first modeled
the Hénon-Heiles model which describes the nonlinear motion of a star around
a galactic centre with the motion restricted to a plane.

This paper is organized as follows: ection 2 comprises of few essential pre-
liminaries to be used throughout the paper. Section 3 elucidates the basic struc-
tured characteristics of the given Hamiltonian chaotic model in detail. Section 4
investigates of the (HPS) method for the given system via ACM. Section 5 con-
sists of the numerical simulations which are displayed graphically using MAT-
LAB. Section 6 concludes the present paper.
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2. Preliminaries

The master system and slave system are considered as:

żm = f1(zm), (1)

żs = f2(zs) + w, (2)

where zm = (zm1, zm2, . . . , zmn)
T , zs = (zs1, zs2, . . . , zsn)

T are the state vari-
ables of (1) and (2) respectively, f1, f2 : R

n → Rn are two nonlinear continuous
vector functions and w = (w1, w2, . . . , wn) ∈ Rn is the properly designed con-
troller.

We define the hybrid projective synchronization (HPS) error as:

lim
t→∞

‖e(t)‖ = lim
t→∞

‖zs(t)− ζzm(t)‖ = 0, (3)

for some ζ = diag(ζ1, ζ2, . . . , ζn) and ‖ · ‖ represents vector norm.

Remark 1. For ζ1 = ζ2 = . . . = ζn = 1, complete synchronization is
achieved.

Remark 2. For ζ1 = ζ2 = . . . = ζn = −1, anti-synchronization is attained.

Remark 3. If ζi’s are not all zeros and ζi 6= ζj for some i and j, then
modified projective synchronization is obtained.

3. System Description

Proposed by Vaidyanathan et al. [27], the discussed chaotic system can be
written as:























żm1 = zm2

żm2 = −zm1 − 2zm1zm3 + az2m1

żm3 = zm4

żm4 = −zm3 − z2m1 + z2m3 + bz4m3,

(4)

where (zm1, zm2, zm3, zm4)
T ∈ R4 is the state vector and A and B are param-

eters. When A = 1.5 and B = −1.9, the system (4) exhibits chaos. Also, the
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Lyapunov exponents of system (4) are LE1 = 0.0015, LE2 = 0, LE3 = 0,
LE1 = −0.0015. In addition, Figure 1(a-f) display the phase diagrams of (4).
However, the detailed analytic study and numerical results for the system (4)
can be found in [27].
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Figure 1: Phase diagrams of Hamiltonian chaotic system in (a) zm2−
zm3 plane, (b) zm3− zm4 plane, (c) zm2− zm3− zm4 space, (d) zm1−
zm3 − zm4 space

4. Stability Analysis

In this section, we discuss HPS scheme to design the laws which estimate
parameters with adaptive controllers in such a manner that the state vector
zm1, zm2, zm3 and zm4 approaches to equilibrium points as t tends to infinity.

The system (4) is selected as the master system and the corresponding slave
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system may be defined as:























żs1 = zs2 + w1

żs2 = −zs1 − 2zs1zs3 +Az2s1 + w2

żs3 = zs4 + w3

żs4 = −zs3 − z2s1 + z2s3 +Bz4s3 + w4,

(5)

where w1, w2, w3 and w4 are adaptive nonlinear controllers to be constructed so
that HPS between two identical Hamiltonian chaotic systems will be attained.
Also, Figure 2(a-d) show the phase diagrams of the system (5).
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Figure 2: Phase diagrams of Hamiltonian chaotic system in (a) zs1−
zs4 plane, (b) zs2−zs3 plane, (c) zs3−zs4−zs1 space, (d) zs3−zs1−zs2
space
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We formulate the state errors as






















e1 = zs1 − ζ1zm1

e2 = zs2 − ζ2zm2

e3 = zs3 − ζ3zm3

e4 = zs4 − ζ4zm4.

(6)

Our ultimate goal here is to construct controllers wi, (i = 1, 2, 3, 4) so that the
synchronization errors defined in (6) satisfy

lim
t→∞

ei(t) = 0 for i = 1, 2, 3, 4.

The consequent error dynamics turns out to be











































ė1 = e2 + (ζ2 − ζ1)zm2 + w1

ė2 = −e1 + (ζ2 − ζ1)zm1 − 2(zs1zs3 − ζ2zm1zm3)

+A(z2s1 − ζ2z
2
m1) + w2

ė3 = e4 + (ζ4 − ζ3)zm4 + w3

ė4 = −e3 + (ζ4 − ζ3)zm4 − (z2s1 − ζ4z
2
m1)

+(z2s3 − ζ4z
2
m3) +B(z4s3 − ζ4z

4
m3) +w4.

(7)

Next, the adaptive nonlinear controllers are designed by











































w1 = −e2 − (ζ2 − ζ1)zm2 − L1e1

w2 = e1 − (ζ2 − ζ1)zm1 + 2(zs1zs3 − ζ2zm1zm3)

−Â(z2s1 − ζ2z
2
m1)− L2e2

w3 = −e4 − (ζ4 − ζ3)zm4 − L3e3

w4 = e3 − (ζ4 − ζ3)zm4 + (z2s1 − ζ4z
2
m1)− (z2s3 − ζ4z

2
m3)

−B̂(z4s3 − ζ4z
4
m3)− L4e4,

(8)

where L1 > 0, L2 > 0, L3 > 0, L4 > 0 are gain constants.
On substituting the controllers (8) in error dynamics (7), we get























ė1 = −L1e1

ė2 = (A− Â)(z2s1 − ζ2z
2
m1)− L2e2

ė3 = −L3e3

ė4 = (B − B̂)(z4s3 − ζ4z
4
m3)− L4e4,

(9)
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where Â, B̂ are estimated quantities of unknown parameter A, B respectively.
Defining the parameter estimation error as:

Ã = A− Â, B̃ = B − B̂. (10)

Using (10), the error dynamics (9) is written as:























ė1 = −L1e1

ė2 = Ã(x2s1 − ζ2x
2
m1)− L2e2

ė3 = −L3e3

ė4 = B̃(x4s3 − ζ4x
4
m3)− L4e4.

(11)

On differentiating parameter estimation error (10), one finds that

˙̃
A = −

˙̂
A,

˙̃
B = −

˙̂
B. (12)

Constructing the classic Lyapunov function by the rule:

V =
1

2
[e21 + e22 + e23 + e24 + Ã2 + B̃2], (13)

which implying that V is positive definite.
The derivative of Lyapunov function V may be written as:

V̇ = e1ė1 + e2ė2 + e3ė3 + e4ė4 − Ã
˙̂
A− B̃

˙̂
B. (14)

Keeping (14) in mind, we are describing the parameter estimates laws as:

{ ˙̂
A = (z2s1 − ζ2z

2
m1)e2 + L5Ã

˙̂
B = (z4s3 − ζ4z

4
m3)e4 + L6B̃,

(15)

where L5 > 0 and L6 > 0 are gain constants.

Theorem 4. The chaotic systems (4)-(5) are asymptotically hybrid pro-

jective synchronized for all initial states (zm1(0), zm2(0), zm3(0), zm4(0)) ∈ R4

by the designed adaptive controller (8) and the parameter update law (15).

Proof. The Lyapunov function V as considered in (13) is positive definite
function. On simplification, Eqns. (11), (14) and (15) reduces to

V̇ − L1e
2
1 − L2e

2
2 − L3e

2
3 − L4e

2
4 − L5Ã

2 − L6B̃
2 < 0,
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ensuring that V̇ is negative definite.
Thus, using LST [20], we conclude that synchronization error e(t) → 0

exponentially as t → ∞ for all initial conditions e(0) ∈ R4. This finishes the
proof.

5. Numerical Simulation and Discussion

This section performs some numerical simulations to illustrate effectively the
proposed HPS technique via ACM. ζ = diag(ζ1, ζ2, . . . , ζn). The initial states
of master (4) and slave systems (5) are (zm1(0) = 0.2, zm2(0) = 0, zm3(0) =
−0.2, zm4(0) = 0) and (zs1(0) = 0.2, zs2(0) = 0.2, zs3(0) = −0.2, zs4(0) = 0) re-
spectively. Also, the scaling matrix ζ is selected as ζ1 = 4, ζ2 = −3, ζ3 = 2, and
ζ4 = −5. The control gains are chosen as Li = 6 for i = 1, 2, . . . , 6. In addition,
simulation results concerning the hybrid projective synchronized trajectories of
systems (4) and (5) are shown in Figure 3(a-d). Moreover, Figure 4(a-e) show
that the synchronization error (e1, e2, e3, e4) = (0.4, 0.2, 0, 0) converging to zero
as t tending to infinity. In Figure 5(a-b), it is noted that the estimated quantities
(Â, B̂) of unknown parameters converging to their original values asymptotical
with time. Hence, the proposed HPS synchronization strategy in master and
slave systems is achieved computationally.

6. Conclusion

In this paper, hybrid projective synchronization in newly designed Hamiltonian
chaotic systems has been investigated using ACM. Keeping Lyapunov stability
theory in view, adaptive controllers have been described to attain asymptotic
stability of the error dynamics of the given system. Further, numerical simula-
tions through MATLAB are presented to validate the efficiency of the proposed
methodology. Remarkably, the theoretical results completely agree with the
computational results. Such scheme may be utilised to control the nonlinear
motion of a star around a galactic centre with motion restricted to a plane. In
addition, the proposed strategy may find important applications in the areas of
image encryption and secure communication.
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Figure 3: Hybrid projective synchronization of Hamiltonian chaotic
systems (a) between xm1(t) − xs1(t), (b) between xm2(t) − xs2(t),
(c) between xm3(t)− xs3(t), (d) between xm4(t)− xs4(t)
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