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Abstract: This work present a new conclusion for weighted DT-moduli of
smoothness (DTMS). Furthermore, the best weighted approximation on a finite
closed interval D = [—1, 1] are computed by DTMS. For any r € N,, 0 < p < oo,
1 <n<rand ¢(x) =+1— 22 the equivalences

ED(f wap)p ~ @l (F )00 D)y 5.

~ @y (7, 10x]], D)

Yatd.6+5P

and
ED(fowap)p ~ @y (F 10N D)aysp ~ 0]~
X @y (F0 100 Dot gm0
are valid.
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1. Introduction

Let us begin with the following notation which was introduced by [8]. For
o, € Jp, let us denote J, = (%,O) if 0 < p < o0, and Jp, = [0,00) if p = 0.

The following is definition of ]ngrﬁ and Lff’ﬁ spaces.

Definition 1. ([8]) Let w, () = (1+2)%(1—1z)” be the (classical) Jacobi
weight. Define

Lg;f ={f:D—R: f(r—1) € ACioc(=1,1); [[fllwasp = Hwa,ﬁf(T)Hp

< oo, and 1<p< oo},
Lo ={f:D—R: || fllapp = [wasflly < oo, and 0<p < oo},

and for convenience, denote ILZ"(’? = L7

Hierarchy foundations of the moduli of smoothness began modern with the
work of Ditzian and Totik, 1987 (see [4]). They established better continuous
moduli of the function in a norm space. Then Kopotun et al. [5] contributed
the function approximated by Lffjrﬁ and Lff’ﬁ spaces. That work would need
to discuss the best weighted approximation of convex function. By the same
token, our study attempts to fill a gap in the existing literature by construct a
new best weighted approximation as an extension of Kopotun’s work [6, 7, 8].
Our work here depends on the constructed symmetric difference of f in [2].

2. Methodology for weighted DTMS

Let D = [—1,1] be measurable subset of R and P = {D;},cn be a family of
finite subsets of D. We have Lebesgue partition P of D, if D; are measurable
sets, UjenD; = D and D; ND, = 0, for j # ¢. Now, the following definition is
referred to as Lebesgue Stieltjes integral-i, a term that will be used extensively
throughout this paper.

Definition 2. ([1])Let D be measurable set, f : D — R be a bounded
function, and £; : D — R be nondecreasing function for ¢ € N. For a
Lebesgue partition P of D, put LS(f, P, £) = >0 [[ey m; Li(n(Dy))
and LS(f, P, L) = 37  [Lien Mj Li(u(D;)) where p is a measure func-
tion of D, m; = inf{f(z) : = € D;}, M; = sup{f(z) : =z € D;}, and
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L =Ly, Ly, ---. Also, Li(z;) — Li(xj—1) > 0, LS(f, P, £) < LS(f, P,
L), Thew [ f A= sup{LS(f, £)} and [T [, £ AL = inf{TS(f, £)} where
LS(f, £) = {LS(f, P, L) : P part of set D} and TS(f, £) = {IS(f, P, L) :
P part of set D}. 1 [T, J7f AL = [T;c [, f dL where dL = dyx dLyx -+
Then f is integral [, according to £; for i € N.

The class of all Lebesgue—Stieltjes integrable functions is defined as follows.
Let Iy be the class of all functions of Lebesgue-Stieltjes sense whose integral-i
of f satisfies Definition 2, i.e.,

Iy ={f: f is integrable function according to L;, i € N}
D —D
~(r:11 [ rac=1T [ rac. (1)
iEN i ieN” ?

Definition 3. ([2]) Let f € AP(Y,), for i € N, the symmetric difference
of f is denoted by

D .
ol m>={ e 2)

0, otherwise.

Definition 4. ([2]) For o, € J,, 7 € Ny and 0 < p < 00, V" (wg, )
space is defined as

(g 5) = {f : f €Lgf NIy and Tjy(f,2) < oo},
and PP (w, 5) = OP(wa,p).
The following features of symmetric difference are added:
P (wa,5) = BT (W1 541)- ®)
By virtue of (3), we see the following immediate consequence
(wa,8) % U (ST, 2) = (woy1 g 1) x U (FD, 2) (4)
Definition 5. ([2]) A weighted DTMS in ®P"(w,,g) is defined by

@ (FO, 1041 D 5.0
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= sup {[[was 0" Tl (f7, @)l » 0< B < [lOn]},
where |0y < 2(i71), N > 2.

— cos( j=0,---,n, is called the Chebyshev partition of [—1,1].

Let T, = = {tj}]—o , be a partition and n > 1. The set t; = t;, =
5,
f llowing theorem covers all weighted DTMS equivalents in this paper.

Theorem 6. ([2]) Assume that s,r € N, , a,3 € J, , 0 <p < oo and
f e AP, nor ”(wa 3). If P is Lebesgue partition of D, and T}, is Chebyshev

partition with P N T # (). Then, for any constant ¢ may be depend on 1 and
J;n and may be depend on |D| < &, for some §, € R, we have

ity PO O D) 5.0 ~ o)y (SO, 0N D) pp ()

~ of8o) x @y, (F7), 116arll D) ~ Nlwa, 56" f ™ (6)

a+%,ﬁ+%’p

~ e i) Ao iy (P, NON ] DYy s 2 I D] < e(n, T} (7)

and

IOAlI" x @l (F: 10N D) s

~ 0, Tjn) g (O 10N D)y 0 (8)
~ Hw0175¢77f(77)”p ~ C(TI7 Jjﬂl) X {w;zjl+217 (f Z+277 HQNH ) a+g,5+%’p

Cif D] > e(n, Jjn)} - 9)

Lemma 7 If f € A® n@rr (wag) is such that f)(x) = pT(f) (x), where
pn €T NAD N >k >2andseS(T,,r+2)nAPN ®P"(wq,g). Then there
exists a Constant ¢1 = ¢1(k) such that

1f = Sllwa g < €1 DL NN D) 5,0 - (10)

Proof. By virtue of ([3], proof of Theorem 3.3), then (10) is valid. O
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3. Main result

Our contributions to discussion of constrained approximation are continuing
with this section. The outcomes that are related directly to the proves from
Section 2 are demonstrated as well. Now, we ready to position the following
definition.

Definition 8. For «,f € J, and f € Iy, we set
57(7,2) (fv wa,,@)p

= inf{||f = pnllapp pn €T NAD NI, f € ADNOP(w,p)},

to denote the degree of best convex polynomial approximation of f.

Theorem 9. Suppose that o, € J,, 1 <p < oo and f € A®) NPP(wq,g).
Then,

ED (f,wa,8)p < cw? (£, 10x], D) a5, (11)
ED(fwap)p < ey (f110x ] D)aysp (12)

and
ED(f,wa8)p < ca? (f, 110011y D)t s, 45,0 (13)

where ¢ is a constant may depend on «, 3 or, may depend on §.

Proof. Let f € A®) N &P (w, ), 57(12)(]“, Wq,3)p be degree of best convex
polynomial approximation of f, that defined based on Definition 8. Then the
degree of best convex polynomial approximation of f less than or equal ||f —
Pnlla,,p and the polynomial p,, in m, N A n I;. Then by Lemma 7, there
is a constant ¢, and degree of best convex polynomial approximation of f less
than or equal c\|q§rU;‘l¢(f,:1:)||aﬁ,p. Therefore, (11) is proven. Next, the proof
(12) is similar to proof of equivalent (5). Finally, by (3), then ®"(wq—_54-5) C
PP (wq,5) where 6 < 1. Therefore ®P"(wq,3) C PP (Waqs5+5), thus by (11),
(13) is implied. O

The reworked outcomes by the following theorem. In fact, this theorem is
the most important ®P(w,, g) space characterization.
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Theorem 10. ForreNo,a,ﬁeJ and p < 0. IffeA(QrMIﬂ’( Wa,3),
P is Lebesgue partition of D, and Tn is Chebyshev partition with P 0T, # (.
Then,

ED (fowap)p < el (F7 1061, D) s (14)
P (F.wap)p < (@)@l oy (FO 0N Do,y oy (15)
and
L (P NON ] D)y 5 < € ooz 520" F O, (16)
where 1 <n <r, @ > 1 and c is a constant depend on 1 and Jj,.

Proof. Suppose that f € A(Q)ﬂq)p(wa,g) and P, T are Lebesgue and Cheby-
shev partitions of D with P N Tn # (). The proof (14) is given by Theorem 6,
Lemma 7 and (4). Thus, by (14) and equivalent of (5), (6), then (15) is inferred.

Next, let ¢ be a constant defined based on (7), (9), and |D| > 1. Then assume
from (8), r =i+ 2n and r > 3. Hence, (16) is also attained. O

Theorem 11. For r € N, and o, 8 € J,, there is a constant ¢ may be
depend on r, a, B, p, wfr and may be depend on 7, «, 3, p, wa ,n and Jj, such
that f € A? NPT (wg5), Jj, = [Uj—(n4i) Wj—(n4i)+1) and 1 < <. Then,

ED(fwa8)p < clON "Ly (10N D) 5.
and
ED (fwap)p < e Tin) @ gy (F0 10N D) s -

Proof. Since, by (5) and (14), then & (f,wap)p < coml, (fO, 047, D)y
where ¢, = ¢o(d,) for some §, € RT. Let r =i+ 2n, 1 <n < r, then, by virtue
of (9), there exists a constant ¢ = ¢(, Jj,), and |D| > c¢. Then,

D (f, w0y < @i 0P 10N B,y g

Hence by (9) and (8), we obtain
P (f,wap)p < clON "Dy (£, 10N D .

and
57g2) (f’ wa,ﬁ) < sz 217(f(2n ||9N|| D)wa+7],ﬂ+7]’p :
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4. Applications

The function f(z) = x* — 1 is defined as a convex function at the interval [0, 1].
The value of moduli of smoothness in (14) of Theorem 10 is verified here. From
Definition 3, U, (f),2) = [T,en J” FdLs.

If r =0. Let f(z) = 2% — 2. Let £; : [0,1] = R, i = 1,2, and £y(x) =
sin(z), L2(x) = y/x be nondecreasing functions. Let P = {Dy,Dy} be Lebesgue
partition such that D; = [0,0.62) and Dy = [0.62, 1]. Then, p(D;) = 0.62 and
wu(Dy) = 0.38. So, h < |||, |0n]] = 0.62 < 2(271) = 1. Hence,

Dy (O] 10,12, o= sup  [[OF,(F,2)]2 55 (17)
0<h<lon |
and
1574(f,2) 86,2 = lwa,sUhs (£, )15
Then,
2 2
Uhg(f. ) / fdLy =infLS(f,Ly) = > [ my x Li(u(Dy))
j=1:=1
=my X L1(u(D1)) X La(p(D1)) +ma x L1 (p(D2)) x La(p(D2)),
where
m1:1nf |f(x—hV1—22)=2f(x)+ f(x+ hV1—2?)|,
z€Dy
and
my = inIDg |f(x —hV1—22)—2f(x)+ f(x+ hV1—22)|.
A I)
Then,
Ui f, )-mf\a:—h\/l—a:2 —(z — hV/1 —22) = 2(z* — z)
z€Dy

+(x + hV/1 —22)* — (2 + hV1 — 22)| x £1(0.62)L(0.62)
+ inf |(z —hV/1 —22)? — (2 — h/1 — 22) — 2(2* — z)

z€Do

+(x +hV/1 —22)* — (2 4+ hV1 — 22)| x £1(0.38)L5(0.38)

= inf |22%h* — 122%h? — 42°h? 4 122°h2 + 20%| x sin(0.62) x 1/(0.62)

x€D,
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+ inf 122 Rt — 122 0% — 422h? + 122252 + 21| x sin(0.38) x 1/(0.38)
xell2

= inf |- (12h2 — 2hM)z? 4 (12h% — 4h™) 2% 4 2h*| x (0.008)
xeldq

+ xlélmf)Q | — (12n% — 2h%) 2t + (12h% — 4h™)2? + 20| x (0.004).

Let f1(x) = —(12h? —2h*)2x? + (12h2? — 4h*)2? 4+2h* be a function of z € D).
Let A = —(12h% — 2h*), B = (12h% — 4h*) and C = 2h* be a factors variables
of the function f;. Then, the range of fi is Ry = [2h% 6h%(4 — h?%)]. Also,
if z € Dy then the range of f; is Ry = [0,6h%*(4 — h?)]. Then, 6%¢(f’ h) =
(2h1) x (0.008) + (0) x (0.004).

Therefore, the symmetric difference is defined as below:

Table 1: Shows symmetric difference values U,%( fih) of f.

fle) v Ghy(f.h)

zt—x 0 (0.016 h*)

Then, from (17), we get

11 = 2)* (1 + )7 x (Bh,(f,2))3 = (1 = 2)*(1 +2)” x (0.016 1|3

1
= (/ |(1—2)*(1 + ) x (0.016 h*)|*dz). (18)
0

From (18), we have

Case 1. Let a = 8 =1, then

(1= 2)* (1 +2)7 x (Bhy(f,2))]3 = 11 = 2)(1 +2) x (Bhy(f,2))]3
/ (1 — 2%) x (0.016hY)|2dz) = (0.016h%)? / (1 — 2?)|*d)
= (0.016h")? x (/1(@«4 — 227 +1)dx)
0

1 1 1
= (0.016n1)? x [(/0 x4dx)—(2/0 dex)Jr(/O dz)) :(0.016h4)2x(%).
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From (17) and (18), therefore, the weighted DTMS of order 2 was found as
follows on the basis of Table 1:

oy (F 0N [0, w2 = sup  [[(1 = 22) x (U7, (f,2)) ]

0<h<||0x]]

8
= (0.0160x[[*) x 1/ (15) = (0.01L[oI1*).

Case II. If o # . Let a =3 and 8 = 0.25.
1
(1= 2)*(1 +2)% x (Bh4(f,2))]13 = (/0 (1= 2)*(1 4 2)°% x (0.016n")[*dx)
1
= (/ (1 —2)%(1 + 2)°° x (0.016h*)?)dx)
0
1
= (0.016h")? x (/ (1 —2)°(1 + 2)°®)dz)
0
= (0.016h*)? x (/1((336 — 6% + 152% — 202° + 1522 — 62 + 1) x V1 + z)dx)
0
1 1
= (0.016A1)? x (/ (2% x V14 z)dz — 6/ (z° x 1+ 2)dx
0 0
1 1 1
+15/ (z x V1 + z)dx — 20/ (z® x V1 + z)dz + 15/ (z% x V1 + 2)dx
0 0 0

1 1
—6/ (r x V1+x)de + / (V1+ x)dx)
0 0

2 3 12 2 13 10 11
_ 4N\2 < .6 5“2 5 o5
= (00165 x (581 + )% = 21+ a)¥ = (1 +0)
2 2 2
+§O(1+x)%——(1+x)%+2(1+x)%—5(1”)3]—6(1—3(1”)?
1 2 2
—1—(1)(1+ )T+ (1+ )%—70(1-1—3:)%4—2(14-3:)%—g(l-i-x)%)
1 4 4 1
+15[2(ﬁ(1+x)%—5(1+x)%+g(1+x)%—5(1+x)%+§(1+x)%)]
6 6 2 2
“20(5(1+2)% = 2(L+ )2+ Z(1+2)2 — Z(1+2)%) + 152 (1 + )2
4 2 2 2
—5(14-3:)%+§(1+x)%]—6(g(1+:1:)%—§(1+$)%)+[—(1+x)%])
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= (0.016h™)2 x (0.1956 — 6 x (0.2269) + 15 x (0.2705) — 20 x (0.335) + 15
% (0.4402) — 6 x (0.6437) + 1.2189) = (0.016h*)% x (0.1514).
From (17) and (18), therefore, the weighted DTMS of order 2 was found as
follows on the basis of Table 1:

Wg(ﬁ HHNH7 [Ov 1])11)3,0.25,2 = sSup H(l - 13)3(1 + 13)0'25 X (Ul%qb(fax))”?
0<h<|lOn]]

= (0.016|6r7]|*) x +/(0.1514) = (0.0062/|0x7]|*).

5. Conclusions

We have described the behaviors of the weighted DTMS equivalence obtained in
this study are constructed with that of the values o and 5 in this paper. More
specifically, we investigated the nature of the best weighted approximation to
f due to the above mentioned DTMS behaviors, if f is convex. However, based
on our key findings, we obtain the following application:

Table 2: The weighted DTMS of f(z) = 2* — .

Method  « 53 D Order Value Result
DTMS DTMS

weighted

DTMS 1 1 2  @§(Ju,2 00116y ]|*  0.0016

weighted

DTMS 3 025 2 @5(Jugoasz 0.0062fx]* 0.00091
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