International Journal of Applied Mathematics

Volume 34 No. 4 2021, 621-631

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v34i4.2

EQUIVALENCE OF WEIGHTED DT-MODULI OF CONVEX FUNCTIONS

Malik Saad Al-Muhja^{1,2}, Habibulla Akhadkulov¹ Nazihah Ahmad¹§

¹Department of Mathematics and Statistics School of Quantitative Sciences College of Arts and Sciences, Universiti Utara Malaysia 06010 Sintok, Kedah, MALAYSIA

² Department of Mathematics and Computer Application College of Sciences, University of Al-Muthanna Samawa 66001, IRAQ

Abstract: This work present a new conclusion for weighted DT-moduli of smoothness (DTMS). Furthermore, the best weighted approximation on a finite closed interval $\mathbb{D} = [-1, 1]$ are computed by DTMS. For any $r \in \mathbb{N}_{\circ}$, $0 , <math>1 \le \eta \le r$ and $\phi(x) = \sqrt{1 - x^2}$, the equivalences

$$\mathcal{E}_{n}^{(2)}(f, w_{\alpha, \beta})_{p} \sim \varpi_{i, r}^{\phi} (f^{(r)}, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{w_{\alpha, \beta}, p}$$
$$\sim \varpi_{i+1, r-1}^{\phi} (f^{(r)}, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{w_{\alpha+\frac{1}{2}, \beta+\frac{1}{2}}, p}$$

and

$$\mathcal{E}_{n}^{(2)}(f, w_{\alpha,\beta})_{p} \sim \varpi_{i+\eta}^{\phi} (f, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{\alpha,\beta,p} \sim \|\theta_{\mathcal{N}}\|^{-\eta}$$
$$\times \varpi_{i,2\eta}^{\phi} (f^{(2\eta)}, \|\theta_{\mathcal{N}}\|)_{\alpha+\eta,\beta+\eta,p}$$

are valid.

AMS Subject Classification: 41A10, 41A25, 26A42

Key Words: moduli of smoothness; best weighted approximation

Received: October 11, 2020

© 2021 Academic Publications

[§]Correspondence author

1. Introduction

Let us begin with the following notation which was introduced by [8]. For $\alpha, \beta \in J_p$, let us denote $J_p = (\frac{-1}{p}, 0)$ if $0 , and <math>J_p = [0, \infty)$ if $p = \infty$. The following is definition of $\mathbb{L}_{p,r}^{\alpha,\beta}$ and $\mathbb{L}_p^{\alpha,\beta}$ spaces.

Definition 1. ([8]) Let $w_{\alpha,\beta}(x) = (1+x)^{\alpha}(1-x)^{\beta}$ be the (classical) Jacobi weight. Define

$$\begin{split} \mathbb{L}_{p,r}^{\alpha,\beta} &= \{f: \mathbb{D} \longrightarrow \mathbb{R}: f^{(r-1)} \in AC_{loc}(-1,1), \quad \|f\|_{w_{\alpha,\beta},p} = \|w_{\alpha,\beta}f^{(r)}\|_p \\ &< \infty \ , \quad \text{and} \quad 1 \leq p \leq \infty \}, \\ \mathbb{L}_p^{\alpha,\beta} &= \{f: \mathbb{D} \longrightarrow \mathbb{R}: \|f\|_{\alpha,\beta,p} = \|w_{\alpha,\beta}f\|_p < \infty, \quad \text{and} \quad 0 < p \leq \infty \}, \end{split}$$
 and for convenience, denote $\mathbb{L}_{p,0}^{\alpha,\beta} = \mathbb{L}_p^{\alpha,\beta}$.

Hierarchy foundations of the moduli of smoothness began modern with the work of Ditzian and Totik, 1987 (see [4]). They established better continuous moduli of the function in a norm space. Then Kopotun et al. [5] contributed the function approximated by $\mathbb{L}_{p,r}^{\alpha,\beta}$ and $\mathbb{L}_p^{\alpha,\beta}$ spaces. That work would need to discuss the best weighted approximation of convex function. By the same token, our study attempts to fill a gap in the existing literature by construct a new best weighted approximation as an extension of Kopotun's work [6, 7, 8]. Our work here depends on the constructed symmetric difference of f in [2].

2. Methodology for weighted DTMS

Let $\mathbb{D} = [-1, 1]$ be measurable subset of \mathbb{R} and $\mathbf{P} = \{\mathbb{D}_j\}_{j \in \mathbb{N}}$ be a family of finite subsets of \mathbb{D} . We have Lebesgue partition \mathbf{P} of \mathbb{D} , if \mathbb{D}_j are measurable sets, $\cup_{j \in \mathbb{N}} \mathbb{D}_j = \mathbb{D}$ and $\mathbb{D}_j \cap \mathbb{D}_{\iota} = \emptyset$, for $j \neq \iota$. Now, the following definition is referred to as Lebesgue Stieltjes integral-i, a term that will be used extensively throughout this paper.

Definition 2. ([1])Let \mathbb{D} be measurable set, $f: \mathbb{D} \to \mathbb{R}$ be a bounded function, and $\mathcal{L}_i: \mathbb{D} \to \mathbb{R}$ be nondecreasing function for $i \in \mathbb{N}$. For a Lebesgue partition \mathbf{P} of \mathbb{D} , put $\underline{\mathrm{LS}}(f, \mathbf{P}, \underline{\mathcal{L}}) = \sum_{j=1}^n \prod_{i \in \mathbb{N}} m_j \mathcal{L}_i(\mu(\mathbb{D}_j))$ and $\overline{\mathrm{LS}}(f, \mathbf{P}, \underline{\mathcal{L}}) = \sum_{j=1}^n \prod_{i \in \mathbb{N}} M_j \mathcal{L}_i(\mu(\mathbb{D}_j))$ where μ is a measure function of \mathbb{D} , $m_j = \inf\{f(x): x \in \mathbb{D}_j\}$, $M_j = \sup\{f(x): x \in \mathbb{D}_j\}$, and

 $\underline{\mathcal{L}} = \mathcal{L}_1, \ \mathcal{L}_2, \ \cdots . \text{ Also, } \mathcal{L}_i(x_j) - \mathcal{L}_i(x_{j-1}) > 0, \ \underline{\mathrm{LS}}(f, \ \mathbf{P}, \ \underline{\mathcal{L}}) \leq \overline{\mathrm{LS}}(f, \ \mathbf{P}, \ \underline{\mathcal{L}}) \\
\underline{\mathcal{L}}, \ \prod_{i \in \mathbb{N}} \underline{\int}_i^{\mathbb{D}} f \ \underline{d}\underline{\mathcal{L}} = \sup\{\underline{\mathrm{LS}}(f, \ \underline{\mathcal{L}})\} \text{ and } \prod_{i \in \mathbb{N}} \overline{\int}_i^{\mathbb{D}} f \ \underline{d}\underline{\mathcal{L}} = \inf\{\overline{\mathrm{LS}}(f, \ \underline{\mathcal{L}})\} \text{ where } \\
\underline{\mathrm{LS}}(f, \ \underline{\mathcal{L}}) = \{\underline{\mathrm{LS}}(f, \ \mathbf{P}, \ \underline{\mathcal{L}}) : \mathbf{P} \text{ part of set } \mathbb{D}\} \text{ and } \overline{\mathrm{LS}}(f, \ \underline{\mathcal{L}}) = \{\overline{\mathrm{LS}}(f, \ \mathbf{P}, \ \underline{\mathcal{L}}) : \mathbf{P} \text{ part of set } \mathbb{D}\}.$ $\mathbf{P} \text{ part of set } \mathbb{D}\}. \text{ If } \prod_{i \in \mathbb{N}} \underline{\int}_i^{\mathbb{D}} f \ \underline{d}\underline{\mathcal{L}} = \prod_{i \in \mathbb{N}} \overline{\int}_i^{\mathbb{D}} f \ \underline{d}\underline{\mathcal{L}} \text{ where } \underline{d}\underline{\mathcal{L}} = d\mathcal{L}_1 \times d\mathcal{L}_2 \times \cdots.$ $\mathbf{P} \text{ Then } f \text{ is integral } \int_i \text{ according to } \mathcal{L}_i \text{ for } i \in \mathbb{N}.$

The class of all Lebesgue–Stieltjes integrable functions is defined as follows. Let I_f be the class of all functions of Lebesgue–Stieltjes sense whose integral-i of f satisfies Definition 2, i.e.,

 $I_f = \{f : f \text{ is integrable function according to } \mathcal{L}_i, i \in \mathbb{N}\}$

$$= \{ f : \prod_{i \in \mathbb{N}} \underline{\int}_{i}^{\mathbb{D}} f \, \underline{d\mathcal{L}} = \prod_{i \in \mathbb{N}} \overline{\int}_{i}^{\mathbb{D}} f \, \underline{d\mathcal{L}} \}. \tag{1}$$

Definition 3. ([2]) Let $f \in \Delta^{(2)}(Y_s)$, for $i \in \mathbb{N}$, the symmetric difference of f is denoted by

$$\mathfrak{O}_{h\phi}^{i}(f, x) = \begin{cases}
\prod_{i \in \mathbb{N}} \int_{i}^{\mathbb{D}} f \, d\mathcal{L}_{\phi}, & \text{if } f \in I_{f}, \\
0, & \text{otherwise.}
\end{cases}$$
(2)

Definition 4. ([2]) For $\alpha, \beta \in J_p$, $r \in \mathbb{N}_0$ and $0 , <math>\Phi^{p,r}(w_{\alpha,\beta})$ space is defined as

$$\Phi^{p,r}(w_{\alpha,\beta}) = \{ f : f \in \mathbb{L}_{n,r}^{\alpha,\beta} \cap I_f \text{ and } \mho_{h\phi}^i(f,x) < \infty \},$$

and $\Phi^{p,0}(w_{\alpha,\beta}) = \Phi^p(w_{\alpha,\beta}).$

The following features of symmetric difference are added:

$$\Phi^{p,r+1}(w_{\alpha,\beta}) = \Phi^{p,r}(w_{\alpha+\frac{1}{2},\beta+\frac{1}{2}}). \tag{3}$$

By virtue of (3), we see the following immediate consequence

$$(w_{\alpha,\beta}) \times \mathcal{O}_{h,\phi}^{i}(f^{(r+1)}, x) = (w_{\alpha+\frac{1}{2},\beta+\frac{1}{2}}) \times \mathcal{O}_{h,\phi}^{i+1}(f^{(r)}, x)$$
 (4)

Definition 5. ([2]) A weighted DTMS in $\Phi^{p,r}(w_{\alpha,\beta})$ is defined by

$$\varpi_{i,r}^{\phi} (f^{(r)}, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{w_{\alpha,\beta},p}$$

$$= \sup \{ \|w_{\alpha,\beta} \phi^r \mathcal{O}_{h\phi}^i(f^{(r)}, x)\|_p, \ 0 < h \le \|\theta_{\mathcal{N}}\| \},$$

where $\|\theta_{\mathcal{N}}\| < 2(i^{-1}), \, \mathcal{N} \ge 2.$

Let $\hat{T}_{\eta} = \{t_j\}_{j=0}^{\eta}$, be a partition and $\eta > 1$. The set $t_j = t_{j,\eta} = -\cos(\frac{j\Pi}{\eta}), \ j = 0, \cdots, \eta$, is called the Chebyshev partition of [-1,1].

The following theorem covers all weighted DTMS equivalents in this paper.

Theorem 6. ([2]) Assume that $s, r \in \mathbb{N}_{\circ}$, $\alpha, \beta \in J_{p}$, $0 and <math>f \in \Delta^{(2)}(Y_{s}) \cap \Phi^{p,r}(w_{\alpha,\beta})$. If **P** is Lebesgue partition of \mathbb{D} , and \hat{T}_{η} is Chebyshev partition with $\mathbf{P} \cap \hat{T}_{\eta} \neq \emptyset$. Then, for any constant c may be depend on η and $J_{j,\eta}$ and may be depend on $|\mathbb{D}| \leq \delta_{\circ}$ for some $\delta_{\circ} \in \mathbb{R}^{+}$, we have

$$\overline{\omega}_{i+1,r}^{\phi} (f^{(r)}, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{w_{\alpha,\beta},p} \sim c(\delta_{\circ}) \overline{\omega}_{i,r+1}^{\phi} (f^{(r+1)}, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{w_{\alpha,\beta},p}$$
 (5)

$$\sim c(\delta_{\circ}) \times \varpi_{i+1,r}^{\phi} (f^{(r)}, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{w_{\alpha+\frac{1}{2},\beta+\frac{1}{2}}, p} \sim \|w_{\alpha,\beta}\phi^{\eta} f^{(\eta)}\|_{p}$$
 (6)

$$\sim c(\eta, J_{j,\eta}) \{ \varpi_{i+2\eta, i+\eta}^{\phi} (f^{(i+\eta)}, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{w_{\alpha, \beta}, p} : if |\mathbb{D}| \le c(\eta, J_{j,\eta}) \}$$
 (7)

and

$$\|\theta_{\mathcal{N}}\|^{\eta} \times \varpi_{i+n}^{\phi} (f, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{w_{\alpha,\beta},p}$$

$$\sim c(\eta, J_{j,\eta}) \varpi_{i,2\eta}^{\phi} (f^{(2\eta)}, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{w_{\alpha+\eta,\beta+\eta},p}$$
 (8)

$$\sim \|w_{\alpha,\beta}\phi^{\eta}f^{(\eta)}\|_{p} \sim c(\eta, J_{j,\eta}) \times \{\varpi_{i,i+2\eta}^{\phi} (f^{(i+2\eta)}, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{w_{\alpha+\frac{\eta}{2},\beta+\frac{\eta}{2},p}}\}$$

$$: if |\mathbb{D}| > c(\eta, J_{j,\eta}) \}. \tag{9}$$

Lemma 7. If $f \in \Delta^{(2)} \cap \Phi^{p,r}(w_{\alpha,\beta})$ is such that $f^{(r)}(x) = p_n^{(r)}(x)$, where $p_n \in \pi_n \cap \Delta^{(2)}$, $N \ge k \ge 2$ and $s \in \mathbb{S}(\hat{T}_n, r+2) \cap \Delta^{(2)} \cap \Phi^{p,r}(w_{\alpha,\beta})$. Then there exists a constant $c_1 = c_1(k)$ such that

$$||f - s||_{w_{\alpha,\beta},p} \le c_1 \,\varpi_{i,r}^{\phi}(f, ||\theta_{\mathcal{N}}||, \mathbb{D})_{w_{\alpha,\beta},p} \,. \tag{10}$$

Proof. By virtue of ([3], proof of Theorem 3.3), then (10) is valid. \Box

3. Main result

Our contributions to discussion of constrained approximation are continuing with this section. The outcomes that are related directly to the proves from Section 2 are demonstrated as well. Now, we ready to position the following definition.

Definition 8. For $\alpha, \beta \in J_p$ and $f \in I_f$, we set

$$\mathcal{E}_n^{(2)}(f, w_{\alpha,\beta})_p$$

$$= \inf\{\|f - p_n\|_{\alpha,\beta,p}, p_n \in \pi_n \cap \Delta^{(2)} \cap I_f, f \in \Delta^{(2)} \cap \Phi^p(w_{\alpha,\beta})\},\$$

to denote the degree of best convex polynomial approximation of f.

Theorem 9. Suppose that $\alpha, \beta \in J_p$, $1 \le p \le \infty$ and $f \in \Delta^{(2)} \cap \Phi^p(w_{\alpha,\beta})$. Then,

$$\mathcal{E}_n^{(2)}(f, w_{\alpha,\beta})_p \le c \varpi_i^{\phi}(f, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{\alpha,\beta,p} \tag{11}$$

$$\mathcal{E}_{n}^{(2)}(f, w_{\alpha,\beta})_{p} \leq c \varpi_{i,1}^{\phi}(f', \|\theta_{\mathcal{N}}\|, \mathbb{D})_{\alpha,\beta,p}$$

$$\tag{12}$$

and

$$\mathcal{E}_n^{(2)}(f, w_{\alpha,\beta})_p \le c \varpi_i^{\phi}(f, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{\alpha+\delta, \beta+\delta, p}, \tag{13}$$

where c is a constant may depend on α, β or, may depend on δ .

Proof. Let $f \in \Delta^{(2)} \cap \Phi^p(w_{\alpha,\beta})$, $\mathcal{E}_n^{(2)}(f,w_{\alpha,\beta})_p$ be degree of best convex polynomial approximation of f, that defined based on Definition 8. Then the degree of best convex polynomial approximation of f less than or equal $||f - p_n||_{\alpha,\beta,p}$ and the polynomial p_n in $\pi_n \cap \Delta^{(2)} \cap I_f$. Then by Lemma 7, there is a constant c, and degree of best convex polynomial approximation of f less than or equal $c \|\phi^r \mathcal{O}_{h\phi}^i(f,x)\|_{\alpha,\beta,p}$. Therefore, (11) is proven. Next, the proof (12) is similar to proof of equivalent (5). Finally, by (3), then $\Phi^{p,r}(w_{\alpha-\delta,\beta-\delta}) \subset \Phi^{p,r}(w_{\alpha,\beta})$ where $\delta < 1$. Therefore $\Phi^{p,r}(w_{\alpha,\beta}) \subset \Phi^{p,r}(w_{\alpha+\delta,\beta+\delta})$, thus by (11), (13) is implied.

The reworked outcomes by the following theorem. In fact, this theorem is the most important $\Phi^p(w_{\alpha,\beta})$ space characterization.

Theorem 10. For $r \in \mathbb{N}_{\circ}$, $\alpha, \beta \in J_p$ and $p < \infty$. If $f \in \Delta^{(2)} \cap \Phi^p(w_{\alpha,\beta})$, \mathbf{P} is Lebesgue partition of \mathbb{D} , and \hat{T}_{η} is Chebyshev partition with $\mathbf{P} \cap \hat{T}_{\eta} \neq \emptyset$. Then,

$$\mathcal{E}_n^{(2)}(f, w_{\alpha,\beta})_p \le c \varpi_{i,r}^{\phi}(f^{(r)}, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{w_{\alpha,\beta},p}$$
(14)

$$\mathcal{E}_{n}^{(2)}(f, w_{\alpha, \beta})_{p} \leq c(\delta_{\circ}) \varpi_{i+1, r-1}^{\phi}(f^{(r)}, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{w_{\alpha + \frac{1}{2}, \beta + \frac{1}{2}, p}}$$
(15)

and

$$\varpi_{i,r}^{\phi}(f^{(r)}, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{w_{\alpha,\beta},p} \le c^{-1} \|w_{\alpha-\frac{\eta}{2},\beta-\frac{\eta}{2}}\phi^{\eta}f^{(\eta)}\|_{p},$$
(16)

where $1 \leq \eta \leq r$, $\frac{|\mathbb{D}|}{c} > 1$ and c is a constant depend on η and $J_{j,\eta}$.

Proof. Suppose that $f \in \Delta^{(2)} \cap \Phi^p(w_{\alpha,\beta})$ and $\mathbf{P}, \hat{T}_{\eta}$ are Lebesgue and Chebyshev partitions of \mathbb{D} with $\mathbf{P} \cap \hat{T}_{\eta} \neq \emptyset$. The proof (14) is given by Theorem 6, Lemma 7 and (4). Thus, by (14) and equivalent of (5), (6), then (15) is inferred. Next, let c be a constant defined based on (7), (9), and $\frac{|\mathbb{D}|}{c} > 1$. Then assume from (8), $r = i + 2\eta$ and $r \geq 3$. Hence, (16) is also attained.

Theorem 11. For $r \in \mathbb{N}_{\circ}$ and $\alpha, \beta \in J_p$, there is a constant c may be depend on $r, \alpha, \beta, p, \varpi_{1,r}^{\phi}$ and may be depend on $r, \alpha, \beta, p, \varpi_{1,r}^{\phi}$, η and $J_{j,\eta}$ such that $f \in \Delta^{(2)} \cap \Phi^{p,r}(w_{\alpha,\beta})$, $J_{j,\eta} = [u_{j-(\eta+i)}, u_{j-(\eta+i)+1}]$ and $1 \leq \eta \leq r$. Then,

$$\mathcal{E}_n^{(2)}(f, w_{\alpha,\beta})_p \le c \|\theta_{\mathcal{N}}\|^{\eta} \varpi_{i+\eta}^{\phi}(f, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{w_{\alpha,\beta}, p}$$

and

$$\mathcal{E}_n^{(2)}(f, w_{\alpha,\beta})_p \le c(\eta, J_{j,\eta}) \varpi_{i,2\eta}^{\phi}(f^{(2\eta)}, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{w_{\alpha+\eta,\beta+\eta},p}.$$

Proof. Since, by (5) and (14), then $\mathcal{E}_n^{(2)}(f, w_{\alpha,\beta})_p \leq c_\circ \varpi_{i,r}^\phi(f^{(r)}, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{w_{\alpha,\beta},p}$, where $c_\circ = c_\circ(\delta_\circ)$ for some $\delta_\circ \in \mathbb{R}^+$. Let $r = i + 2\eta$, $1 \leq \eta \leq r$, then, by virtue of (9), there exists a constant $c = c(\eta, J_{j,\eta})$, and $|\mathbb{D}| > c$. Then,

$$\mathcal{E}_n^{(2)}(f, w_{\alpha,\beta})_p \le c \varpi_{i,i+2\eta}^{\phi}(f^{(i+2\eta)}, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{w_{\alpha+\frac{\eta}{2}, \beta+\frac{\eta}{2}, p}}.$$

Hence by (9) and (8), we obtain

$$\mathcal{E}_{n}^{(2)}(f, w_{\alpha, \beta})_{p} \leq c \|\theta_{\mathcal{N}}\|^{\eta} \varpi_{i+\eta}^{\phi}(f, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{w_{\alpha, \beta}, p}$$

and

$$\mathcal{E}_n^{(2)}(f, w_{\alpha,\beta})_p \le c \varpi_{i,2\eta}^{\phi}(f^{(2\eta)}, \|\theta_{\mathcal{N}}\|, \mathbb{D})_{w_{\alpha+\eta,\beta+\eta}, p} .$$

4. Applications

The function $f(x) = x^4 - x$ is defined as a convex function at the interval [0,1]. The value of moduli of smoothness in (14) of Theorem 10 is verified here. From Definition 3, $\mho_{h\phi}^i(f^{(r)},x) = \prod_{i\in\mathbb{N}} \int_i^{\mathbb{D}} f^{(r)} \underline{\mathrm{d}} \mathcal{L}_{\phi}$.

If r = 0. Let $f(x) = x^4 - x$. Let $\mathcal{L}_i : [0,1] \to \mathbb{R}$, i = 1,2, and $\mathcal{L}_1(x) = \sin(x)$, $\mathcal{L}_2(x) = \sqrt{x}$ be nondecreasing functions. Let $\mathbf{P} = \{\mathbb{D}_1, \mathbb{D}_2\}$ be Lebesgue partition such that $\mathbb{D}_1 = [0,0.62)$ and $\mathbb{D}_2 = [0.62,1]$. Then, $\mu(\mathbb{D}_1) = 0.62$ and $\mu(\mathbb{D}_2) = 0.38$. So, $h \leq \|\theta_{\mathcal{N}}\|$, $\|\theta_{\mathcal{N}}\| = 0.62 < 2(2^{-1}) = 1$. Hence,

$$\varpi_2^{\phi}(f, \|\theta_{\mathcal{N}}\|, [0, 1])_{w_{\alpha, \beta}, 2}^2 = \sup_{0 < h < \|\theta_{\mathcal{N}}\|} \|\mathcal{O}_{h\phi}^2(f, x)\|_{\alpha, \beta, 2}^2 \tag{17}$$

and

$$\| \mathcal{O}_{h\phi}^2(f,x) \|_{\alpha,\beta,2}^2 = \| w_{\alpha,\beta} \mathcal{O}_{h\phi}^2(f,x) \|_2^2.$$

Then,

$$\mho_{h\phi}^2(f,x) = \prod_{i=1}^2 \int_i^{\mathbb{D}} f \underline{\mathrm{d} \mathcal{L}_{\phi}} = \inf \underline{\mathrm{LS}}(f,\underline{\mathcal{L}_{\phi}}) = \sum_{j=1}^2 \prod_{i=1}^2 m_j \times \mathcal{L}_i(\mu(\mathbb{D}_j))$$

$$= m_1 \times \mathcal{L}_1(\mu(\mathbb{D}_1)) \times \mathcal{L}_2(\mu(\mathbb{D}_1)) + m_2 \times \mathcal{L}_1(\mu(\mathbb{D}_2)) \times \mathcal{L}_2(\mu(\mathbb{D}_2)),$$

where

$$m_1 = \inf_{x \in \mathbb{D}_1} |f(x - h\sqrt{1 - x^2}) - 2f(x) + f(x + h\sqrt{1 - x^2})|,$$

and

$$m_2 = \inf_{x \in \mathbb{D}_2} |f(x - h\sqrt{1 - x^2}) - 2f(x) + f(x + h\sqrt{1 - x^2})|.$$

Then,

$$\begin{split} \mathcal{O}^2_{h\phi}(f,x) &= \inf_{x \in \mathbb{D}_1} |(x - h\sqrt{1 - x^2})^4 - (x - h\sqrt{1 - x^2}) - 2(x^4 - x) \\ &+ (x + h\sqrt{1 - x^2})^4 - (x + h\sqrt{1 - x^2})| \times \mathcal{L}_1(0.62)\mathcal{L}_2(0.62) \\ &+ \inf_{x \in \mathbb{D}_2} |(x - h\sqrt{1 - x^2})^4 - (x - h\sqrt{1 - x^2}) - 2(x^4 - x) \\ &+ (x + h\sqrt{1 - x^2})^4 - (x + h\sqrt{1 - x^2})| \times \mathcal{L}_1(0.38)\mathcal{L}_2(0.38) \\ &= \inf_{x \in \mathbb{D}_1} |2x^4h^4 - 12x^4h^2 - 4x^2h^4 + 12x^2h^2 + 2h^4| \times \sin(0.62) \times \sqrt{(0.62)} \end{split}$$

$$+ \inf_{x \in \mathbb{D}_2} |2x^4h^4 - 12x^4h^2 - 4x^2h^4 + 12x^2h^2 + 2h^4| \times \sin(0.38) \times \sqrt{(0.38)}$$

$$= \inf_{x \in \mathbb{D}_1} |-(12h^2 - 2h^4)x^4 + (12h^2 - 4h^4)x^2 + 2h^4| \times (0.008)$$

$$+ \inf_{x \in \mathbb{D}_2} |-(12h^2 - 2h^4)x^4 + (12h^2 - 4h^4)x^2 + 2h^4| \times (0.004).$$

Let $f_1(x) = -(12h^2 - 2h^4)x^4 + (12h^2 - 4h^4)x^2 + 2h^4$ be a function of $x \in \mathbb{D}_1$. Let $A = -(12h^2 - 2h^4)$, $B = (12h^2 - 4h^4)$ and $C = 2h^4$ be a factors variables of the function f_1 . Then, the range of f_1 is $R_1 = [2h^4, 6h^2(4 - h^2)]$. Also, if $x \in \mathbb{D}_2$ then the range of f_1 is $R_2 = [0, 6h^2(4 - h^2)]$. Then, $\mathfrak{F}_{h\phi}^2(f, h) = (2h^4) \times (0.008) + (0) \times (0.004)$.

Therefore, the symmetric difference is defined as below:

Table 1: Shows symmetric difference values $\mho_{h\phi}^2(f,h)$ of f.

$$f(x)$$
 r $\mho_{h\phi}^{2}(f,h)$ $x^{4}-x$ 0 (0.016 h^{4})

Then, from (17), we get

$$\|(1-x)^{\alpha}(1+x)^{\beta} \times (\mathfrak{T}_{h\phi}^{2}(f,x))\|_{2}^{2} = \|(1-x)^{\alpha}(1+x)^{\beta} \times (0.016\ h^{4})\|_{2}^{2}$$
$$= \left(\int_{0}^{1} |(1-x)^{\alpha}(1+x)^{\beta} \times (0.016\ h^{4})|^{2} dx\right). \tag{18}$$

From (18), we have

Case I. Let $\alpha = \beta = 1$, then

$$\begin{aligned} \|(1-x)^{\alpha}(1+x)^{\beta} \times (\mho_{h\phi}^{2}(f,x))\|_{2}^{2} &= \|(1-x)(1+x) \times (\mho_{h\phi}^{2}(f,x))\|_{2}^{2} \\ &= (\int_{0}^{1} |(1-x^{2}) \times (0.016h^{4})|^{2} dx) = (0.016h^{4})^{2} \times (\int_{0}^{1} |(1-x^{2})|^{2} dx) \\ &= (0.016h^{4})^{2} \times (\int_{0}^{1} (x^{4} - 2x^{2} + 1) dx) \\ &= (0.016h^{4})^{2} \times [(\int_{0}^{1} x^{4} dx) - (2\int_{0}^{1} x^{2} dx) + (\int_{0}^{1} dx)] = (0.016h^{4})^{2} \times (\frac{8}{15}). \end{aligned}$$

From (17) and (18), therefore, the weighted DTMS of order 2 was found as follows on the basis of Table 1:

$$\varpi_2^{\phi}(f, \|\theta_{\mathcal{N}}\|, [0, 1])_{w_{1,1}, 2} = \sup_{0 < h \le \|\theta_{\mathcal{N}}\|} \|(1 - x^2) \times (\mho_{h\phi}^2(f, x))\|_2$$

$$= (0.016 \|\theta_{\mathcal{N}}\|^4) \times \sqrt{(\frac{8}{15})} = (0.011 \|\theta_{\mathcal{N}}\|^4).$$

Case II. If $\alpha \neq \beta$. Let $\alpha = 3$ and $\beta = 0.25$.

$$\begin{split} \|(1-x)^{\alpha}(1+x)^{\beta} \times (\mho_{h\phi}^{2}(f,x))\|_{2}^{2} &= (\int_{0}^{1} |(1-x)^{3}(1+x)^{0.25} \times (0.016h^{4})|^{2}dx) \\ &= (\int_{0}^{1} ((1-x)^{6}(1+x)^{0.5} \times (0.016h^{4})^{2})dx) \\ &= (0.016h^{4})^{2} \times (\int_{0}^{1} ((1-x)^{6}(1+x)^{0.5})dx) \\ &= (0.016h^{4})^{2} \times (\int_{0}^{1} (x^{6}-6x^{5}+15x^{4}-20x^{3}+15x^{2}-6x+1) \times \sqrt{1+x})dx) \\ &= (0.016h^{4})^{2} \times (\int_{0}^{1} (x^{6} \times \sqrt{1+x})dx-6\int_{0}^{1} (x^{5} \times \sqrt{1+x})dx \\ &+15\int_{0}^{1} (x^{4} \times \sqrt{1+x})dx-20\int_{0}^{1} (x^{3} \times \sqrt{1+x})dx+15\int_{0}^{1} (x^{2} \times \sqrt{1+x})dx \\ &-6\int_{0}^{1} (x \times \sqrt{1+x})dx+\int_{0}^{1} (\sqrt{1+x})dx) \\ &= (0.016h^{4})^{2} \times (\frac{2}{15}x^{6}(1+x)^{\frac{3}{2}}-\frac{12}{15}[\frac{2}{13}(1+x)^{\frac{13}{2}}-\frac{10}{11}(1+x)^{\frac{11}{2}} \\ &+\frac{20}{9}(1+x)^{\frac{9}{2}}-\frac{20}{7}(1+x)^{\frac{7}{2}}+2(1+x)^{\frac{5}{2}}-\frac{2}{3}(1+x)^{\frac{3}{2}}]-6(\frac{2}{13}(1+x)^{\frac{13}{2}}) \\ &-\frac{10}{11}(1+x)^{\frac{11}{2}}+\frac{20}{9}(1+x)^{\frac{9}{2}}-\frac{20}{7}(1+x)^{\frac{7}{2}}+2(1+x)^{\frac{5}{2}}-\frac{2}{3}(1+x)^{\frac{3}{2}}) \\ &+15[2(\frac{1}{11}(1+x)^{\frac{11}{2}}-\frac{4}{9}(1+x)^{\frac{9}{2}}-\frac{6}{7}(1+x)^{\frac{7}{2}}-\frac{4}{5}(1+x)^{\frac{5}{2}}+\frac{1}{3}(1+x)^{\frac{3}{2}})] \\ &-20(\frac{2}{9}(1+x)^{\frac{9}{2}}-\frac{6}{7}(1+x)^{\frac{7}{2}}+\frac{6}{5}(1+x)^{\frac{5}{2}}-\frac{2}{3}(1+x)^{\frac{3}{2}})+15[\frac{2}{7}(1+x)^{\frac{7}{2}} \\ &-\frac{4}{5}(1+x)^{\frac{5}{2}}+\frac{2}{3}(1+x)^{\frac{3}{2}}]-6(\frac{2}{5}(1+x)^{\frac{5}{2}}-\frac{2}{3}(1+x)^{\frac{3}{2}})+[\frac{2}{3}(1+x)^{\frac{3}{2}}]) \end{split}$$

$$= (0.016h^4)^2 \times (0.1956 - 6 \times (0.2269) + 15 \times (0.2705) - 20 \times (0.335) + 15 \times (0.4402) - 6 \times (0.6437) + 1.2189) = (0.016h^4)^2 \times (0.1514).$$

From (17) and (18), therefore, the weighted DTMS of order 2 was found as follows on the basis of Table 1:

$$\varpi_2^{\phi}(f, \|\theta_{\mathcal{N}}\|, [0, 1])_{w_{3,0.25}, 2} = \sup_{0 < h \le \|\theta_{\mathcal{N}}\|} \|(1 - x)^3 (1 + x)^{0.25} \times (\mho_{h\phi}^2(f, x))\|_2$$

$$= (0.016 \|\theta_{\mathcal{N}}\|^4) \times \sqrt{(0.1514)} = (0.0062 \|\theta_{\mathcal{N}}\|^4).$$

5. Conclusions

We have described the behaviors of the weighted DTMS equivalence obtained in this study are constructed with that of the values α and β in this paper. More specifically, we investigated the nature of the best weighted approximation to f due to the above mentioned DTMS behaviors, if f is convex. However, based on our key findings, we obtain the following application:

Method	α	β	p	Order	Value	Result
			_	DTMS	DTMS	
weighted						
DTMS	1	1	2	$arpi_2^\phi(\cdot)_{w_{1,1},2}$	$0.011\ \theta_{\mathcal{N}}\ ^4$	0.0016
weighted						
DTMS	3	0.25	2	$\varpi_2^{\phi}(\cdot)_{w_{3,0,25,2}}$	$0.0062 \ \theta_{\mathcal{N}}\ ^4$	0.00091

Table 2: The weighted DTMS of $f(x) = x^4 - x$.

Acknowledgements

The first author is supported by University of Al-Muthanna while studying for his Ph.D. We would like to thank Universiti Utara Malaysia (UUM) for the financial support. The corresponding author is Nazihah Ahmad.

References

- [1] M. Al-Muhja, A Korovkin type approximation theorem and its applications, *Abstract and Applied Analysis*, **2014** (2014), 6 pp.
- [2] M. Al-Muhja, H. Akhadkulov, N. Ahmad, Equivalence of weighted DT-moduli of (co)convex functions, *International Journal of Mathematics and Computer Science*, **16** (2021), 407-422.
- [3] M. Al-Muhja, H. Akhadkulov, N. Ahmad, Estimates for constrained approximation in $\mathbb{L}_{p,r}^{\alpha,\beta}$ space: Piecewise polynomial, *International Journal of Mathematics and Computer Science*, **16** (2021), 389-406.
- [4] Z. Ditzian, V. Totik, *Moduli of Smoothness*, Springer Ser. in Computational Mathematics 9, Springer-Verlag, New York (1987).
- [5] K. Kopotun, D. Leviatan, I. Shevchuk, New moduli of smoothness, *Publications de l'Institut Mathématique (Beograd)*, **96** (2014), 169-180.
- [6] K. Kopotun, D. Leviatan, I. Shevchuk, On moduli of smoothness with Jacobi weights, *Ukrainian Mathematical Journal*, **70** (2018), 379-401.
- [7] K. Kopotun, D. Leviatan, I. Shevchuk, On weighted approximation with Jacobi weights, *Journal of Approximation Theory*, **237** (2019), 96-112.
- [8] K. Kopotun, Weighted moduli of smoothness of k-monotone functions and applications, Journal of Approximation Theory, 192 (2015), 102-131.