SOME VARIANTS OF THE CONTRACTION
MAPPING PRINCIPLE FOR COMPARABLE ELEMENTS

Abstract

In this paper, by using the partial ordering method we study the existence and uniqueness of fixed points for operator equations. The convergence of the iterative sequences to fixed points is satisfied. The presented theorems improve and generalize some important results in the literature.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 4
Year: 2021

DOI: 10.12732/ijam.v34i4.3

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.
  2. [2] A. Ca˜nada, and A. Zertiti, Topological methods in the study of positive solutions for some nonlinear delay integral equations, Nonlinear Analysis, T.M.A., 23, No 9 (1994), 1153-1165.
  3. [3] A. Ca˜nada and A. Zertiti, Fixed point theorems for systems of equations in ordered Banach spaces with applications to differential and integral equations, Nonlinear Analysis, T.M.A., 27 (1996), 397-411.
  4. [4] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York (1988).
  5. [5] D. Guo, Y. Cho, and Z. Jiang, Partial Ordering Methods in Nonlinear Problems, Nova Science Publishers, New York (2004).
  6. [6] H. Alzer, Sharp inequalities for the Beta function. Indagationes Mathematicae, 12, No 1 (2001), 15-21.
  7. [7] M.S. El Khannoussi and A. Zertiti, Fixed point theorems in the study of operators equations in ordered Banach spaces, International Journal of Pure and Applied Mathematics, 4 (2016), 789-801.
  8. [8] M.S. El Khannoussi and A. Zertiti, Topological methods in the study of positive solutions for operator equations in ordered Banach spaces. Electronic Journal of Differential Equations, No 171 (2016), 1-13.
  9. [9] M.A. Krasnosel’skii, P.P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin (1984).
  10. [10] M.A. Krasnosel’skii, Positive Solutions of Operator Equations, Noordhoff, Groningen (1964).
  11. [11] M.G. Krein and M. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl., 10 (1962), 1-128 (Transl. from Uspekhi Mat. Nauk, 3 (1948), 3-95).
  12. [12] Moustafa El-Shahed, Positive solutions for boundary value problems of nonlinear fractional differential equation, Abstract and Applied Analysis 2007 (2007), Art. 10368, 8 pages.
  13. [13] J.Weissinger, Zur Theorie und Anwendung des Iterationsverfahrens. Math. Nachr., 8 (1952), 193-212.
  14. [14] P.P. Zabreiko, M.A. Krasnosel’skii, and V.Ya. Stetsenko, Bounds for the spectral radius of positive operators. Translated from Matematicheskie Zametki, 1, No 4 (1967), 461-468.