International Journal of Applied Mathematics

Volume 34 No. 4 2021, 647-652

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v34i4.4

A HARMONIC MEAN INEQUALITY FOR
THE EXPONENTIAL INTEGRAL FUNCTION

Kwara Nantomah

Department of Mathematics
Faculty of Mathematical Sciences
C.K. Tedam University of Technology
and Applied Sciences
P. O. Box 24, Navrongo, Upper-East Region, GHANA

Abstract: By using purely analytical techniques, we establish a harmonic
mean inequality for the classical exponential integral function.

AMS Subject Classification: 26D07, 26D20, 33Bxx
Key Words: harmonic mean inequality; exponential integral function; in-
complete gamma function

1. Introduction

The classical exponential integral function is defined as [1, p. 228§]

oo ,—t

_ /oo efst &t (1)
1 t
=T1(0,s)

for s € (0,00) where I'(u, s) is the upper incomplete gamma function defined as

_ > u—1_—t
I'(u,s) = t“" e dt.
S

It satisfies the following properties among others.
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E'(s) = ——, (2)

B'(s) = &

N 68;2 _ (1 + %) B (s). (3)

S

For more properties of this special function, one may refer to [1], [8] and [13].
It is often applied in astrophysics, neutron physics, quantum chemistry as well
as other applied sciences. Due to its importance, it has been studied in diverse
ways. See for instance [3], [5], [12], [14], [15], [16] and [17].

In the present work, we continue the investigation. Specifically, our objec-
tive is to establish a harmonic mean inequality for the function. For harmonic
mean inequalities involving other special functions, the interested reader may
refer to [2], [4], [6], [9], [10], [11], [18], [19].

2. Results
We begin with the following auxiliary results.

Lemma 1. For s € (0,00), the inequality
B(s) + B(1/s) > 2T(0, 1) (1)
is satisfied, with equality when s = 1.

Proof. The case for s = 1 is self-evident. Hence let K(s) = E(s) + E(1/s)
for s € (0,1) U (1,00). Then

sK/(s) = sE'(s) — EE'@/S)

1 —
= € s — e

= h(s).

Then h(s) < 0if s € (0,1) and h(s) > 0if s € (1,00). Hence K(s) is decreasing
on (0,1) and increasing on (1,00). In either case, we have

S

K(s) > lim K(s) = 2I'(0, 1)

s—1

which completes the proof of the lemma. O
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Lemma 2. For s € (0,00), the inequality
E(s)E(1/5) < T(0,1) (5)
is satisfied, with equality when s = 1.

Proof. The case for s = 1 is self-evident. Hence let £(s) = E(s)E(1/s) for
s€(0,1)U(1,00). Then
1
se’el/* L!(s) = e*E(s) — e /*=E(1/s)
s
= v(s).

Now let a(s) = e*E(s). Then by using the fact that E(s) < e %/s for all
positive s (see [7]), we conclude that

Hence «(s) is decreasing on (0,00). Consequently, v(s) > 0 if s € (0,1) and
v(s) < 01if s € (1,00). Thus, L(s) is increasing on (0,1) and decreasing on
(1,00). In either case, we have

L(s) < lim £(s) = T%(0,1)
s—1
which completes the proof of the lemma. ]

We now state the main results of this paper in the following theorem.

Theorem 3. For s € (0,00), the inequality

2E(s)E(1/s)
B+ Bjs) o

is satisfied, with equality when s = 1.

First Proof. By applying Lemma 1 and Lemma 2, we obtain

2E(s)E(1/s) _ 2E(s)E(1/s) _ r2(0,1)
E(s)+ E(1/s) — 2I(0,1) — T(0,1)

=T(0,1)

which completes the proof. O
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Second Proof. The case for s = 1 is self-evident. Hence let M(s) = %

and A(s) =InM(s) for s € (0,1) U (1,00). Then

oy~ B 1E0/s) B =B/

which implies that

E'(s) 1E'(1/s)

s[E(s) + E(1/s)]N(s) =s Fs) E(1/s) — S B/ (s).

This further implies that
RS U DOUN o2 R Doe D)
; [E@ * E(1/8>] M) =5 TS B
= A(s).

Now let p(s) = SEEQ/((SS)) for s € (0,00). Then by using (2) and (3), we obtain

B3 (s)/(5) = B(s)F(5) + sE(s) B"(s) — 2('(5))?
=e E(s) +2¢°E'(s).
Furthermore, by using (1), we obtain

3 S
E08) (6) = B(s) +28(s)

[e’e] efst [e’]
:/ dt—2/ e Stdt
1 13 1
> 11
= / [— — 2} e Stdt
1 t

< 0.

efs

Hence, p'(s) < 0 which shows that p(s) is decreasing for all s € (0,00). By
the decreasing property of p(s), we arrive at the conclusion that A(s) > 0 if

€ (0,1) and A(s) < 0if s € (1,00). Thus, N'(z) > 0if s € (0,1) and N (s) <0
if s € (1,00). These mean that, M(s) is increasing on (0, 1) and decreasing on
(1,00). In either case, we have

M(s) < lim M(s) = E(1) = T(0,1)

s—1

which completes the proof. ]
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