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Abstract: In this paper a creeping movement across a very long, strike-slip
fault vertical to the free surface and of finite width is considered in an isotropic,
homogeneous, visco-elastic fractional order Maxwell type half space. A math-
ematical model for such fault movement is developed during the period when
there is no fault movement and also for the aseismic period which is restored af-
ter the creeping movement. The analytical expressions of displacement, stresses
and strains for both the period are determined by the use of Green’s function
technique and correspondence principle in terms of Mittag-Leffler function. Fi-
nally these displacement, stresses and strains are numerically computed with
suitable values of the model parameters and the results thus obtained are pre-
sented graphically . A detailed study of these expressions can focus some light
on the nature of the stress accumulation near the fault and the study of such
earthquake fault dynamical models helps us to understand mechanism of the
lithosphere-asthenosphere system.
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1. Introduction

There has been an increasing attentiveness in the use of static or quasistatic
displacement, stresses and strains for the inspection of earthquake occurrence.
One of the main consideration of seismologists and geological engineers is the
modelling of dynamic procedure caused on an earthquake. The occurence of
earthquake can be predict by using machine learning techniques P. Debnath et
al. [1]. It has been observe that two successive seismic occurrence in a seismi-
cally alert zone are generally divide by a long aseismic interval in the course of
which slow and steady aseismic surface fluctuation are detected with the help of
ultra-modern measuring apparatus such as strain meter, tilt meter etc. Afore-
said aseismic surface fluctuation designate that slow aseismic change in stress
and strain are occurring in the region which may ultimately accelerate sud-
den or creeping movements across the seismic faults. These faults conceivably
strike-slip or dip -slip type, finite or long , surface breaking or buried situating
in the region. To understand the mechanism of earthquake processes it is nec-
essary to develop mathematical models to study the small ground deformation
observed during the aseismic period in the seismically active regions.

An introducing work including static ground deformation in elastic media
was instigate by J.A. Steketee [2],[3], M.A. Chinnery [4]- [6], T. Maruyama
[7], [8]. D.L. Turcotte et al. [9], J.C. Savage [10] did remarkable works in
analysing the displacement, stress and strain for strike-slip movement of the
fault in the elastic medium. Later a few theoretical models have been expanded
by K. Rybycki [11], A. Mukhopadhyay [12], A. Mukhopadhya et al. [13]. U.
Ghosh et al. [14], P. Segall [15], S. Sen et al. [16] did wonderful works in
analysing the displacement, stresses and strains in the layered medium. S. Sen
et al.[17] and P. Debnath et al.[18],[19] discussed about long interacting strike-
slip faults in the viscoelastic half space. There after the models for finite strike
-slip fault and infinite dip-slip fault under tectonic forces were developed by
P. Debnath et al. [20], [21] and D. Mondal et al. [22], respectively. In most
of the cases elastic or visco-elastic half space of Maxwell type and Standard
linear solid or layered medium were considered to represent the lithosphere
-asthenosphere system. To the best of our knowledge, no theoretical model
has still been developed in the visco-elastic fractional order Maxwell type half
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space to represent earthquake faults. The study of [23]-[26] and observations
in the seismically active regions during aseismic period suggest that fractional
order Maxwell type visco-elastic material may be a suitable representation of
the lithosphere-asthenosphere system. This paper is therefore an application of
fractional calculus to study the earthquake faults in lithosphere - asthenosphere
system.

2. Formulation

A two-dimensional theoretical model with a long vertical surface breaking strike-
slip fault F of width D is taken in the lithosphere- asthenosphere system con-
sisting of a visco-elastic half space of fractional order Maxwell type material.
To represent this, we instigate a rectangular cartesian co-ordinate technique
(y1, y2, y3) with y3 = 0 is the plane of free surface, y3 axis referring downwards
such that the visco-elastic half space can be detail by y3 ≥ 0. The fault F is
taken in the half space y3 ≥ 0 with its upper edge on the free surface along
which y1 axis is directed and y2 axis is perpendicular to y1 axis, lying on the
free surface so that the plane of the fault is given by y2 = 0. The length of
the fault is presume to be elongate differentiate to its width D such that the
components of displacement (u, v, w), stresses τij, and strain eij,i, j = 1, 2, 3 are
independent of y1 and are functions of y2, y3 and time t only and they separate
out in two distinct and mutually independent groups - one group containing
the components u, (τ12, τ13), (e12, e13) corresponding with the strike- slip move-
ment and the additional group including the enduring units accompanied with
a conceivable dip-slip movement of the fault. We here think about the strike-
slip movement over the fault.

The constitutive laws provide the relation between stress and strain possibly
including time derivatives. We here consider strike -slip movement across the
fault when the medium is in aseismic state (t = 0) for which the displacement
u, stresses τ12, τ13 and strains E12, E13 are present. The stress-strain relations
for fractional order Maxwell model of visco-elastic material are taken as follows
(M.A. Matlob and Y. Jamali [26]):

(
1

η
+

1

µ

∂α

∂tα
)τ12 =

∂αe12
∂tα

, (1)

(
1

η
+

1

µ

∂α

∂tα
)τ13 =

∂αe13
∂tα

, (2)

where the operator ∂α

∂tα
is the fractional order derivative operator, as defined

by several authors in fractional calculus. But the most widely used one is the
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Caputo derivative of fractional order α (n − 1 ≤ α ≤ n) of a function f(t),
introduced M. Caputo in 1967, [27] and defined as follows:

aCDα
t f(t) =

1

Γ(n− α)

∫ t

a

Dnf(ζ)

(t− ζ)α−n+1
dζ.

Here Dn is the nth derivative operation and C is used to honor Caputo, α
is the fractional order, a is the lower limit of integration, respectively. In
equations (1) and (2), η is the effective viscosity and µ is the effective rigidity
of the materials.

Figure 1: Section of the model by the plane y1 = 0.

For the small deformations, if the inertial forces are very small so that the
acceleration can be taken to be negligible and if there is no body forces acting in
the system during our consideration, then the quasi-static equilibrium equation
is

∂

∂y2
(τ12) +

∂

∂y3
(τ13) = 0, where (−∞ < y2 < ∞, y3 ≥ 0, t ≥ 0). (3)
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For the fault F ,

τ12(y2, y3, t) → τ∞(t) = τ∞(0)(1 + kt),

as |y2| → ∞, (y3 ≥ 0, t ≥ 0)

and (τ12)0(y2, y3, 0) → τ∞(0)

as |y2| → ∞, (y3 ≥ 0, t ≥ 0).

On y3 = 0, τ13(y2, y3, t) = 0 as (|y2| → ∞, t ≥ 0)

also τ13 → 0 as y3 → ∞, (|y2| → ∞, t ≥ 0)
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, (4)

where τ∞(t) = τ∞(0)(1+kt) where k > 0 and small, is the value of τ12 far away
from the fault maintained by slow linearly increasing tectonic forces and vary
with time. Let u0, (τ12)0, (τ13)0, (e12)0, (e13)0 are the value of u, τ12, τ13, e12, e13
at time t = 0. They are the function of y2, y3 and satisfy the relation (1) to (4).

3. Solution

Partially differentiating (1) with respect to y2 and (2) with respect to y3 , after
that we adding and from (3) with initial condition, we get

▽2U = 0, where U = u− u0. (5)

Taking Laplace transform of the resulting equation with respect to time t, we
get

▽2U = 0, where U = u−
u0
s
, (6)

where s is the Laplace Transform variable.
Throughout the system, the displacement, stresses, and strains are all con-

tinuous and all the equations from (1) to (4) are valid. Tectonic forces far
away from the fault due to mantle convection in the lithosphere-asthenosphere
system cause the fault to creep leading to an earthquake. For the fault F , τ12
increases gradually with time and finally tends to τ∞(t) but we suppose that
the geological state in addition the feature of the fault F is such that it slips
when the magnitude of stress τ12 extended some critical value τc (say)< τ∞
after time T(say). Here we assume τc = 200 bar i.e,2×107N/m2(Pascal) and it
is observed that τ12 extend the value 200 bar after time T = 114 years.

Let, after a time t = T the accumulated stress τ12 near F transcend the
critical level τc and the fault begin the creeping movement. The accumulated
stress will let out at a minimum relatively and the fault becomes locked again
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when the shear stress near it has acceptably been let out. We eliminate this
short period of time during and instantly after creeping movement and assume
the model after the re-establishment of the aseismic state, which occurs when
the seismic distraction near the fault moderately vanish.

For t > T , all the basic equation (1) to (6) remain valid and are continuous
everywhere except for the fault F across which the displacement component u
has a discontinuity which characterizes the creeping fault movement across F
given by [u]F = U ′(t1)f(y3)H(t1) across F (y2 = 0, 0 ≤ y3 ≤ D, t1 = t − T >
0), where [u]F is the discontinuity in displacement across F and H(t1) is the

Heaviside unit step function. Creep velocity v(t1) = ∂U ′(t1)
∂t1

and v(t1), U
′(t1)

vanishes for t1 ≤ 0. Taking Laplace transform of displacement discontinuity,
then

[u] = U ′(s)f(y3). (7)

All the fundamental equations, initial and boundary conditions are same after
the fault movement. The only adaptive boundary condition is τ12(y2, y3, t) → 0
as |y2| → ∞ (y3 ≥ 0, t ≥ 0).

We solving the appear boundary value problem by revise Green’s function
method expanded by T. Maruyama [7],[8] and K. Rybicki [11] and correspon-
dence principle. Let Q(y1, y2, y3) be any point in the medium and P (ζ1, ζ2, ζ3)
be any point on the fault F , then we have

u(Q) =

∫

F

u(P )G(P,Q), (8)

where G(P,Q) = G12(P,Q)dζ3 −G13(P,Q)dζ2 and
G12(P,Q), G13(P,Q) are given by

G12(P,Q) =
1

2π
[
y2 − ζ2
L2

+
y2 − ζ2
M2

],

G13(P,Q) =
1

2π
[
y3 − ζ3
L2

−
y3 + ζ3
M2

].

And L2 = (y2 − ζ2)
2 + (y3 − ζ3)

2, M2 = (y2 − ζ2)
2 + (y3 + ζ3)

2.

On the fault ζ2 = 0, dζ2 = 0. From equation (7) and (8), we obtain

u(Q) = U ′(s)
2π

∫D

0 [y2−ζ2
L2 + y2−ζ2

M2 ]f(ζ3)dζ3. Taking inverse Laplace Transform

with respect to time t1 = t− T , u(Q) = U ′(t1)
2π φ(y2, y3)H(t1), where φ(y2, y3) =

∫ D

0 [ y2
y2
2
+(y3−ζ3)2

+ y2
y2
2
+(y3+ζ3)2

]f(ζ3)dζ3 as ζ2 = 0 on the fault. It is to be noted

that u = 0 for t1 = t− T ≤ 0.
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Assuming displacement, stress and strain to be zero for t1 = t−T ≤ 0, thus

τ12 =
U ′(s)
2π

sα

( 1
η
+ sα

µ
)
φ1(y2, y3). Taking inverse Laplace transform,

τ12 =
H(t1)

2π
φ1(y2, y3)L

−1{
sα

( 1
η
+ sα

µ
)
U ′(s)},

φ1(y2, y3) =
∂φ

∂y2
=

∫ D

0
[
(y3 − ζ3)

2 − y22
(y22 + (y3 − ζ3)2)2

+
(y3 + ζ3)

2 − y22
(y22 + (y3 + ζ3)2)2

]f(ζ3)dζ3

as ζ2 = 0 on the fault.

If we assume U ′(t1) = vt1, where v is a constant then v(t1) =
∂
∂t1

(vt1) = v,

thus we obtain τ12 =
ηH(t1)V

2π φ1(y2, y3)[1−Eα(−
µtα

1

η
)]. Similarly one can obtain

τ13 =
ηH(t1)V

2π
φ2(y2, y3)[1− Eα(−

µtα1
η

)],

φ2(y2, y3) =
∂φ

∂y3
= −2

∫ D

0
[

(y3 − ζ3)y2
(y22 + (y3 − ζ3)2)2

+
(y3 + ζ3)y2

(y22 + (y3 + ζ3)2)2
]f(ζ3)dζ3

as ζ2 = 0 on the fault.

By the principal of superposition, the final solutions can be represented in
the following forms:

u = u0 + y2τ∞(0)[
kt

µ
+

tα

ηΓ(α+ 1)
+

ktα+1

ηΓ(α+ 2)
]

+
V t1
2π

φ(y2, y3)H(t1)

τ12 = (τ12)0Eα(−
µtα

η
) + τ∞(0)[(1 + kt)− Eα(−

µtα

η
)]

+
ηH(t1)V

2π
φ1(y2, y3)[1− Eα(−

µtα1
η

)]

τ13 = (τ13)0Eα(−
µtα

η
) +

ηH(t1)V

2π
φ2(y2, y3)[1− Eα(−

µtα1
η

)]

e12 = (e12)0 + τ∞(0)[
kt

µ
+

tα

ηΓ(α+ 1)
+

ktα+1

ηΓ(α + 2)
]

+
V t1
2π

H(t1)φ1(y2, y3)

e13 = (e13)0 +
V t1
2π

H(t1)φ2(y2, y3)
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where the expressions for φ, φ1, φ2 are given before the equation (9) and Eα(t)
is Mittag-Leffler function which is defined by Eα(t) =

∑

tp

Γ(1+αp) , p runs from
0 to ∞ and 0 < α ≤ 1. It has been notice that the displacement, strains and
stresses are distinctive and will persist bounded overall in the model together
with the upper and lower edges of the fault. The conditions for bounded stresses
and strains are that the function f(y3), f ′(y3) are continuous in 0 ≤ y3 ≤ D
and either f ′′(y3) is continuous in 0 ≤ y3 ≤ D or f ′′(y3) is continuous in
0 ≤ y3 ≤ D, besides for a limited number of points of finite discontinuity
in 0 ≤ y3 ≤ D or f ′′(y3) is continuous in 0 < y3 < D, and remain real
constants m < 1 and n < 1 such that ymf ′′(y3) → 0 or to a finite limit as
y3 → 0+0 and that (D − y3)

nf ′′(y3) → 0 or to a finite limit as y3 → D−0 and
f(D) = 0 = f ′(D), f ′(0) = 0.

4. Numerical Results and Discussions

We assume f(x3) to be f(x3) = 1−
3x23
D2

+
2x33
D3

which indulge all the conditions

for aforesaid bounded strain and stresses.

Following L.M. Cathles [28], K. Aki and P.G. Richard [29], and the current
research on rheological performance of crust and upper mantle by P. Chift, J.
Lin, U. Barcktiausen [30], S. Karato [31], the values to the model parameters
are consider as in the table below:

Parameter Symbol used Value taken

Rigidity µ 3.5 × 1010N/m2

Viscosity η 3× 1019 Pa.s
Width of the fault F D 10× 103 meter
Initial stress (τ12)0,(τ13)0 20× 105N/m2

Stress at infinity τ∞(t) = τ∞(0)[1 + kt]
Initial stress at infinity τ∞(0) 50× 105N/m2

Positive constant k k = 10−9

Critical stress τc 2× 107N/m2

Parameter alpha α 0.4, 0.7, 1

Table 1: Different parameters and their values used in the study.

We compute the surface share strain against time for different fractional
values of α (α = 0.4, α = 0.7, α = 1.0) along the vertical fault before the
commencement of the fault movement. That is we are computing e′12 = e12 −
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Figure 2: (a) Surface shear strain e′12 with different fractional values,
taking y3 = 0, before the fault movement (b) Surface shear strain
E12 with different creep velocities, taking α = 0.4, y3 = 0, after the
fault movement

(e12)0 = τ∞(0)[kt
µ
+ tα

ηΓ(α+1) +
ktα+1

ηΓ(α+2) ] with time. For different fractional values

of α, (α = 0.4, α = 0.7, α = 1.0) we get various curve for the strain against
time. It is observed from Fig-2(a) that under the action of τ∞(t) the share
strain e′12 increases slowly with the time. Also from this figure it is clear that
for the fractional value of α = 0.7, the magnitude of the strain is greater than
the magnitude of the strain with fractional value of α = 0.4. For α = 1.0
we get the magnitude of strain without fractional value and which is same as
reported in the paper of P. Debnath and S. Sen [19]. We found for all the cases
the magnitude of the strain before any fault movement is on the order of 10−3

which is in conformity with the observational fact in seismically active regions
during the aseismic period.

Next, we compute the surface shear strain on account of fault movement
closed to the fault at the time of reinstatement of the aseismic state. Fig-2(b)
shows the change of strain with respect to y2 and taking y3 = 0. We are plotting
E12 = e12− (e12)0− τ∞(0)[kt

µ
+ tα

ηΓ(α+1) +
ktα+1

ηΓ(α+2) ] =
V t1
2π H(t1)φ1(y2, y3) against

y2 for various creeping velocity v. It is observed that the change of shear strain
release near the fault depends on the different creeping velocity v = 0.05m/year,
0.10m/year, 0.20m/year. As the surface shear strain let out close the fault on
account of fault movement. So on the free surface y3 = 0, the magnitude of this
strain is negative everywhere due to release of strain. As we proceed out of the
away from the fault on the surface, the magnitude of this strain release decrease
rapidly. Further investigation shows that due to a creeping fault movement, the
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Figure 3: (a)Surface displacement along with y2 taking y3 = 0, for
the different fractional values of α (b)Share stress near the mid point
on the fault where y2 = 0.5 km. and y3 = 5.0 km. varying with time
for different creep velocities where τ∞ is slowly increasing with time
and fractional value of α = 0.4

shear strain release is on the order of 10−3 for different creeping velocity of v.
This is to be expected, as the rate of shear strain release lies between the order
of 10−3–10−7 in the seismically active regions, as suggested by P. Debnath and
S. Sen [19].

We determine the surface displacement on account of the fault movement
after reinstatement of the aseismic state t1 = t− T , i.e., u− u0 − y2τ∞(0)[kt

µ
+

tα

ηΓ(α+1) +
ktα+1

ηΓ(α+2) ] =
V t1
2π φ(y2, y3)H(t1) with y2. It is observed from Fig-3(a)

that this residual surface displacement depends on the fractional values of α,
including the different fault parameters. For different fractional values of α, it
has been observed some common features in displacement: (i) The residual
surface displacement is attained the maximum magnitude close to the fault for
both y2 > 0 and y2 < 0. (ii) The residual surface displacement reduced quickly
as we proceed out of the way from the fault on the free surface and becomes
very very small for |y2| >> D with D = 10 km. (iii) For y2 > 0 and y2 < 0,
the residual surface displacement is asymmetric and in opposite directions. In
Fig-3(a), it has been observed that for y2 > 0, the residual surface displacement
attains its maximum value for α = 1 near the fault y2 ≈ 0. As y2 increases and
|y2| → ∞, displacement decrease rapidly with a higher rate for smaller values
of α and tends to diminish as |y2| → ∞. We observe that in all the cases, the
effect of surface displacement is very small near the fault and this effect is not
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significant as |y2| increases.
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Figure 4: (a) Stress τ12 due to the movement across the fault closed
to the fault line (b)Stress accumulation and reduction region for the
creeping movement

Next we consider the variation of share stress near the fault with time
i,e. we are computing τ12 = (τ12)0Eα(−

µtα

η
) + τ∞(0)[(1 + kt) − Eα(−

µtα

η
)] +

ηH(t1)V
2π φ2(y2, y3)[1−Eα(−

µtα
1

η
)] with time for different creeping velocities. From

the Fig-3(b), we can find the variation of share stress near the mid-point of the
fault (y2 = 0.5 km, and y3 = 5.0 km) with time for different values of creep
velocity , from v = 0 (no creep) to v = 0.25 m/year. It is found that in all
cases, when fault creep was absent, there is a steady accumulation for the share
stress close to the fault, with gradually decreasing rate of accumulation. If fault
creep commences at t1 = t−T , there is a reduction in the rate of accumulation
of the share stress near the fault due to fault creep, and this effect is greater
for larger values of the creep velocity v. For sufficiently large creep velocities,
there is a gradually let out of the share stress close to the fault after t1 = t−T ,
instead of accumulation of share stress and if v= 0.25 m/year, there is more or
less complete release of the accumulated share stress near F after a sufficient
time.

In Fig-4(a), the stress T12 across the fault on account of the movement along

the fault F where, T12 = ηH(t1)V
2π φ2(y2, y3)[1 − Eα(−

µtα
1

η
)]. We consider share

stress very near to the fault line with y2 = 0.5 km the magnitude of T12 has
been determine and y3 varies from 0 to 50 km. From the figure we observed
that originally the stress is negative and its magnitude diminish up to a depth
of 2 km from the top edge of the fault. Subsequently its magnitude escalate up
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to the lower edge of the fault, where its be at its maximum positive value at
y3 = 10 km. As we proceed downwards the accumulated stress slowly decrease
and tends to zero.
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Figure 5: Contour map for stress accumulation and reduction in the
medium due to the fault slip across the fault

From Fig-4(b), due to the creeping movement across the fault, we observed
a clear demarcation of stress accumulation and stress reduction region. We
compute here τ12 = ηH(t1)V

2π φ2(y2, y3)[1 − Eα(−
µtα1
η
)] with the depth from 0

km to 50 km and y2 from -50km to 50km, it can be notice that there is a
clear separation of stress reduction region which is in red colour and stress
accumulation region which is in blue colour. Now if any 2nd fault is considering
in stress accumulation region the rate of accumulation of the stress near the
fault will be escalate on account of the fault movement along the fault F .
Accordingly the feasible movement along the 2nd fault will increase the time.
Reversely if we considering a 2nd fault is situated in stress reduction region the
stress rate of accumulation will be reduce on account of the fault movement
along the fault F . Therefore the possible movement across the 2nd fault will
delayed the time. From this view point, we have an idea about interacting
faults system on relative positions. Thus our result is consistent with paper of
P. Debnath and S. Sen [18] which was observed in 2015. From Fig-5, we plotted
the contour map for stress release/accumulation in the medium across F due
to the fault creep.
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5. Conclusion

In this model of the lithosphere-asthenosphere system represented by fractional
order Maxwell type material with long, vertical, plane strike-slip fault, our study
provides overview of some physical phenomena due to the creeping strike-slip
fault movement. Tectonic forces on account of mantle convection and other
related occurrence are linearly increasing with time. We used Green’s func-
tion technique and correspondence principle in terms of Mittag-Leffler function
to determine the analytical expressions of displacement, stresses and strains
for both the period. Then the model is validated by numerical results which
are computed by using satisfactory model parameter. The description of the
displacement, stresses and strains are analysed by considering their graphical
representation. The value of the model parameters are taken an important
role which are the values observed for the various earthquake in the different
time. The movement of fault causes stress accumulation/release near the fault
which essentially depend on not only fixed dimension of the fault and creeping
velocities but also on the fractional values of the parameter α and the different
observational point in the medium.
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