Let
be a bounded domain with smooth boundary
. In this paper, we consider the linear operator
in the space
(-times) associated with the
noncoercive bilinear form that defined by
In view of our ealier paper (see [10]), let the conditions
made on the weighted function be sufficiently more general than [10].
In this paper we investigate the resolvent of the operator .
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] K.Kh. Boimatov, A.G. Kostyuchenko, Distribution of eigenvalues of
second-order non-selfadjoint differential operators, Vest. Mosk. Gos. Univ.,
Ser. I, Mat. Mekh., 45, No 3 (1990), 24-31 (In Russian).
[2] K.Kh. Boimatov, A.G. Kostychenko, The spectral asymptotics of nonselfadjoint elliptic systems of differential operators in bounded domains,
Matem. Sbornik, 181, No 12, 1990, 1678-1693 (Russian); English transl. in
Math. USSR Sbornik, 71 (1992), No 2, 517-531.
[3] K.Kh. Boimatov, Asymptotics of the spectrum of an elliptic differential
operator in the degenerate case, Dokl. Akad. Nauk SSSR, 243, No 6 (1978),
1369-1372 (In Russian).
[4] K.Kh. Boimatov, K. Seddighi, On some spectra properties of ordieary
differential operators generated by noncoercive forms, Dokl. Akad. Nauk.
Rossyi, 1996 (In Russian).
[5] K.Kh. Boimatov, Spectral asymptotics of pseudodifferential operators,
Dokl. Akad. Nauk SSSR, 311, No 1 (1990), 14-18; Dokl. Math., 41, No
2 (1990), 196-200 (In Russian).
[6] I.C. Gokhberg, M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, American Mathematical Society, Providence (1969).
[7] T. Kato, Perturbation Theory for Linear Operators, Springer, New York
(1966).
[8] M.A. Naymark, Linear Differential Operators, Nauka Publ., Moscow
(1969) (In Russian).
[9] A. Sameripour, K. Seddighi, Distribution of eigenvalues of nonself-adjoint
elliptic systems degenerate on the domain boundary, Mat. Zametki,
61, No 3 (1997), 463-467; Math. Notes, 61, No 3 (1997), 379-384;
doi:10.4213/mzm1524 (In Russian).
[10] A. Sameripour, K. Seddighi, On the spectral properties of generalized
non-selfadjoint elliptic systems of differential operatorsdegenerated on the
boundary of domain, Bull. Iranian Math. Soc., 24, No 1 (1998), 15-32.
[11] A.A. Shkalikov, Theorems of Tauberian type on the distribution of zeros of
holomorphic functions, Mat. Sb. (N.S.), 123 (165), No 3 (1984), 317-347;
Math. USSR-Sb., 51, No 2 (1985) 315-344 (In Russian).
[12] R. Alizadeh, A. Sameripour, Spectral properties and distribution of
eigenvalues of non-self-adjoint elliptic differential operators, International Journal of Apllied Mathematics, 34, No 1 (2021), 205-216;
DOI:10.12732/ijam.v34i1.11.