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Abstract: A new SIS epidemic model on scale-free networks with stochas-
tic perturbation is considered. We deduce that dynamical behaviors of the
model are related to the basic reproduction number R0 of the corresponding
deterministic model. Under the conditions that the intensities of white noises
interference are sufficiently weak, the solution of the model oscillates around the
disease-free equilibrium of the corresponding deterministic model when R0 < 1,
whereas, the disease will be persistent when R0 > 1.
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1. Introduction

Epidemiology is the science to investigate transmission rules of infectious dis-
eases from the group level, so as to make measures of intervention and control.
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It depends not only on the biological features of infections but also on the con-
tact patterns between populations. With scale-free network theory by Barabási
and Albert [1] developing and maturing, it has been considered as a new and
effective tool to depict and study various complex architectures in nature and
human society. It is more practical to study the spread mechanism of infectious
diseases on scale-free networks.

Pioneering work in this area was carried out by Pastor-Satorras and Vespig-
nani [2, 3]. They introduced the SIS model on scale-free networks and showed
that the spread of infections is tremendously strengthened on scale-free net-
works. Following the work, more and more models, for example, SI [4], SIR [5],
SIRS [6, 7] and SEIRS [8], on scale-free networks were formulated successively.
Notably, a new SIS model with birth and death on scale-free networks was pro-
posed by Zhang and Jin [9]. As mentioned in the paper, the nodes of complex
network have three states: vacant state, susceptible individual occupation and
infected individual occupation, and each node is either empty or occupied by
only one individual. The disease transmission diagram is depicted in Fig. 1.
Let Sk(t) and Ik(t) denote the relative densities of healthy and infected nodes
with degree k at time t, respectively, where k = 1, 2, · · · , n in which n is the
maximum connectivity of any node. Then the equations for the densities Sk(t)
and Ik(t), at the mean-field level, can be expressed as

dSk(t)

dt
= b(1− Sk(t)− Ik(t))− λkSk(t)Θ(t)− dSk(t) + γIk(t),

dIk(t)

dt
= λkSk(t)Θ(t)− γIk(t)− µIk(t),

(1)

where Θ = 1/〈k〉∑n
j=1 ϕ(j)P (j)Ij , ϕ(j) denotes an infected node, with degree

j, occupied edges which can transmit the disease. The parameters in system
(1) are summarized as follows:

b: birth rate of empty nodes to healthy individuals,

λ: transmission coefficient of the disease between susceptible nodes and
infected nodes,

d: death rate due to natural death,

γ; recovery rate of infected individuals,

µ: death rate due to the infectious disease and natural death.

Denote βkj =
1
〈k〉λkϕ(j)P (j), then system (1) can be rewritten as
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Fig. 1: The flow diagram of the new SIS model

dSk =

[

b(1− Sk − Ik)−
n
∑

j=1

βkjSkIj − dSk + γIk

]

dt,

dIk =

[ n
∑

j=1

βkjSkIj − γIk − µIk

]

dt.

(2)

For system (2), according to the results given in Ref.[9], there always exists
a disease-free equilibrium E0 = ( b

b+d
, 0, · · · , b

b+d
, 0). If R0 < 1, E0 is globally

asymptotically stable in D. Otherwise, E0 is unstable and it has a unique
endemic equilibrium E∗ = (S∗

1 , I
∗
1 , · · · , S∗

n, I
∗
n), which is globally asymptotically

stable under the condition γ > b. Here

D =

{

(S1, I1, · · ·, Sn, In) ∈ R
2n
+

∣

∣

∣
0 < Sk + Ik <

b

b+ d
, k = 1, · · ·, n

}

,

M0 =

(

βkjb

(γ + µ)(b+ d)

)

n×n

, R0 = ρ(M0),

and ρ(M0) is the spectral radius of M0.

However, there are uncertainty and random environment in nature, which
inevitably affect the dynamical behaviors of epidemic spreading. Thus deter-
ministic models have some limitations in describing the spread of diseases. The
environmental noise in the ecosystem can be molded by Brownian motion. It is
more suitable to describe the disease spreading with stochastic differential equa-
tions with Brownian motion as noise, i.e., stochastic epidemic model. In recent
years, many scholars have focused on stochastic epidemic models on complex
networks and a lot of results have emerged [10, 11, 12].

Motivated by the works in [9, 10, 11, 12], we will consider the following new
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SIS model with stochastic perturbation

dSk=

[

b(1− Sk − Ik)−
n
∑

j=1

βkjSkIj − dSk + γIk

]

dt+σk1SkdWk1(t),

dIk=

[ n
∑

j=1

βkjSkIj − γIk − µIk

]

dt+σk2IkdWk2(t),

(3)

where Wkj(t), σ
2
kj , k = 1, 2, · · · , n, j = 1, 2 represent independent standard

Brownian motions and the intensities of white noises interference respectively.

The rest of this paper is organized as follows. The existence and uniqueness
of positive solution of system(3) are discussed in the next section. In Section
3, we analyze the asymptotic behavior around the disease-free equilibrium of
corresponding deterministic system (2). In Section 4, we study the dynamics
of system (3) around the endemic equilibrium of system (2). Numerical simu-
lations are given to demonstrate the main results and conclusions are drawn in
Section 5 and Section 6.

2. Existence and uniqueness of positive solution

For any biological system, in order to study dynamical behaviors, whether it
has a global positive solution is the primary issue. In this section, we will
discuss this aspect by the Lyapunov analysis method. The suitable parameters
in Lyapunov function are chosen by graph theory. The Laplacian matrix of
a weighted digraph (ℑ, A) is denoted by LA. For convenience, we denote the
solution of system (3) by X(t) = (S1(t), I1(t), · · · , Sn(t), In(t)).

Theorem 1. For any initial value X(0) ∈ R
2n
+ , there exists a unique

solution to system (3) for all t ≥ 0 and the solution remains in R
2n
+ almost

surely for all times.

Proof. Since the coefficients of system (3) are locally Lipschitz continuous,
for any initial value X(0) ∈ R

2n
+ , there exists a unique local solution on t ∈

[0, τe), where τe is the explosion time. To show that the solution is global, we
only need to show τe = ∞ a.s.. Let m0 be a sufficiently large integer such that
1
m0

< Sk(0) < m0,
1
m0

< Ik(0) < m0 for k = 1, · · · , n. For each integer m > m0,
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define the stopping time as

τm = inf
{

t ∈ [0, τe) : min {Sk(t), Ik(t), k = 1, · · · , n} ≤ 1

m

or max {Sk(t), Ik(t), k = 1, · · · , n} ≥ m
}

,

where we let inf ∅ = +∞. Obviously, τm is increasing as m → ∞. Denoting
limm→∞ τm = τ∞, we can obtain that τ∞ ≤ τe a.s.. Thus, we only need to show
that τ∞ = ∞ a.s.. Next, We prove it by contradiction. If τ∞ < ∞ a.s., there
would exist a pair of constants T > 0 and ǫ ∈ (0, 1) such that P (τ∞ ≤ T ) > ǫ.
Then there is an integer m1 > m0 such that

P (τm ≤ T ) > ǫ, for ∀m ≥ m1. (4)

Let us define a C2-function V : R2n
+ → R+ as

V (X(t)) =

n
∑

k=1

[

(

Sk − aqk − aqk ln
Sk

aqk

)

+ (Ik − 1− ln Ik)

]

,

where qk is the cofactor of the k-th diagonal entry of LB, B =
(

βkj
)

n×n
, and a

is a positive constant to be determined. By Itô’s formula, a direct calculation
yields

dV = LV dt+

n
∑

k=1

[σk1(Sk − aqk)dWk1(t) + σk2(Ik − 1)dWk2(t)] ,

where

LV =

n
∑

k=1

[

(

1− aqk
Sk

)(

b(1− Sk − Ik)−
n
∑

j=1

βkjSkIj − dSk + γIk

)

(

1− 1

Ik

)(

n
∑

j=1

βkjSkIj − γIk − µIk

)

+
1

2

(

aqkσ
2
k1 + σ2

k2

)

]

≤
n
∑

k=1

[

aqk(b+ d) + aqk

n
∑

j=1

βkjIj + γ + µ+ b− (b+ µ)Ik

+
1

2

(

aqkσ
2
k1 + σ2

k2

)

]

=

n
∑

k=1

[

aqk(b+ d) + γ + µ+ b−
(

b+ µ− aqk

n
∑

j=1

βkj

)

Ik
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+
1

2

(

aqkσ
2
k1 + σ2

k2

)

]

.

The last equality above is based on
∑n

k,j=1 qkβkjIj =
∑n

k,j=1 qkβkjIk from

Theorem 2.3 in Ref. [13]. Choose a = min1≤k≤n

{

b+u
qk

∑n
j=1

βkj

}

such that

b+ µ− aqk
∑n

j=1 βkj ≥ 0. Therefore,

dV ≤ Kdt+

n
∑

k=1

[σk1(Sk − aqk)dWk1(t) + σk2(Ik − 1)dWk2(t)] , (5)

where K =
∑n

k=1

[

aqk(b+ d) + γ + µ+ b+ 1
2 (aqkσ

2
k1 + σ2

k2)
]

. Integrating both
sides of (5) from 0 to τm ∧ T and then taking the expectations, we obtain that

V (X(0)) +KT ≥EV (X(τm ∧ T ))

≥E
[

1{τm≤T}V (X(τm))
]

,
(6)

where 1{τm≤T} is the indicator function of {τm ≤ T}. For any ω ∈ {τm ≤
T}, where m > m1, there exists at least one of Sk(τm, ω) and Ik(τm, ω), k =
1, 2, · · · , n, equaling 1

m
or m, then

V (X(τm)) ≥ min
0≤k≤n

(

m− aqk − aqk ln
m

aqk

)

∧ min
0≤k≤n

( 1

m
− aqk + aqk ln(aqkm)

)

,
(7)

where we define q0 =
1
a
. From (4), (6) and (7), it follows that

V (X(0)) +KT ≥ ǫ

[

min
0≤k≤n

(

m− aqk − aqk ln
m

aqk

)

∧ min
0≤k≤n

( 1

m
− aqk + aqk ln(aqkm)

)

]

.

(8)

Letting m → ∞, yields ∞ > V (X(0)) + KT ≥ ∞, which is a contradiction.
Thus the theorem is proved.

3. Asymptotic Behavior around
the Disease-free Equilibrium

In Introduction, we mention that E0 is the disease-free equilibrium of deter-
ministic system (2), which is globally stable when R0 < 1. It means that the



DYNAMICAL BEHAVIORS OF A NEW SIS EPIDEMIC... 1001

disease will die out after some period of time. Hence, it is meaningful to study
the disease-free equilibrium. For system (3), however, there is no disease-free
equilibrium. Thus we will study the asymptotic behavior of system (3) around
E0.

Theorem 2. If R0 < 1, γ > b and

σ2
k1 ≤ b+ d, σ2

k2 ≤ 2(b+ µ),

then for any initial valueX(0) ∈ R
2n
+ , the solution of system (3) has the property

lim sup
t→∞

1

t

n
∑

k=1

E

∫ t

0

[

(

Sk(u)−
b

b+ d

)2
+ I2k(u)

]

du

≤
n
∑

k=1

(ak + ck)

K1

( b

b+ d

)2
σ2
k1,

(9)

where

K1 = min
k=1,··· ,n

{

(ak + ck)(b+ d− σ2
k1), ak

(

b+ µ− σ2
k2

2

)}

,

and ak, ck, k = 1, 2, · · · , n are positive constants defined as in the proof.

Proof. Let sk = Sk − b
b+d

, ik = Ik, then sk ≥ − b
b+d

, ik ≥ 0. For system (3),
it can be rewritten as

dsk(t) =

[

− (b+ d)sk −
n
∑

j=1

βkj

(

sk +
b

b+ d

)

ij + (γ − b)ik

]

dt

+ σk1

(

sk +
b

b+ d

)

dWk1(t),

dik(t) =

[ n
∑

j=1

βkj

(

sk +
b

b+ d

)

ij − (γ + µ)ik

]

dt+ σk2ikdWk2(t).

(10)

Since all elements of M0 = b
(γ+µ)(b+d) (βkj)n×n

are positive, then M0 is irre-

ducible. By Lemma 2.1 of Guo et al. [14], there exists a positive eigenvector
ω = (ω1, ω2, · · · , ωn) of M0 corresponding to ρ(M0), namely that

(ω1, ω2, · · · , ωn)M0 = (ω1, ω2, · · · , ωn)ρ(M0). (11)

Let x(t) = (s1(t), i1(t), · · · , sn(t), in(t)) and define the Lyapunov function as
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V (x(t)) =
1

2

n
∑

k=1

ak(sk + ik)
2 +

1

2

n
∑

k=1

cks
2
k +

n
∑

k=1

ωk

γ + µ
ik,

where ak, ck, k = 1, 2 · · · , n are undetermined positive constants. By Itô’s for-
mula, a direct calculation yields

dV =LV dt+
n
∑

k=1

[ak(sk + ik) + cksk] σk1

(

sk+
b

b+ d

)

dWk1(t)

+

n
∑

k=1

[

ak(sk + ik) +
ωk

γ + µ

]

σk2ikdWk2(t),

(12)

where

LV =

n
∑

k=1

ak(sk + ik) [−(b+ d)sk − (b+ µ)ik]

+

n
∑

k=1

cksk

[

− (b+ d)sk −
n
∑

j=1

βkj

(

sk +
b

b+ d

)

ij + (γ − b)ik

]

+
1

2

n
∑

k=1

(ak + ck)σ
2
k1

(

sk +
b

b+ d

)2
+

1

2

n
∑

k=1

akσ
2
k2i

2
k

+
n
∑

k=1

ωk

γ + µ

[ n
∑

j=1

βkj

(

sk +
b

b+ d

)

ij − (γ + µ)ik

]

≤−
n
∑

k=1

[

(ak + ck)(b+ d− σ2
k1)s

2
k + ak

(

b+ µ− σ2
k2

2

)

i2k

]

+

n
∑

k=1

[ck(γ − b)− ak(2b+ d+ µ)] skik

−
n
∑

k=1

n
∑

j=1

bckβkj
b+ d

skij +

n
∑

k=1

(ak + ck)

(

b

b+ d

)2

σ2
k1

+
n
∑

k=1

n
∑

j=1

ωkβkj
γ + µ

skij +
n
∑

k=1

n
∑

j=1

bωkβkj
(b+ d)(γ + µ)

ij −
n
∑

k=1

ωkik.

The inequality above is using (x + y)2 ≤ 2(x2 + y2) and the fact ik > 0. Let



DYNAMICAL BEHAVIORS OF A NEW SIS EPIDEMIC... 1003

ω = (ω1, · · · , ωn) , i = (i1, · · · , in)⊤, and we note that

n
∑

k=1

n
∑

j=1

bωkβkj
(b+ d)(γ + µ)

ij −
n
∑

k=1

ωkik

=ωM0i− ωi = ωρ(M0)i− ωi

=(R0 − 1)

n
∑

k=1

ωkik < 0,

(13)

due to R0 < 1 and ik > 0. Since γ > b, we can choose ck = ωk(b+d)
b(γ+µ) , ak =

ck(γ−b)
2b+d+µ

> 0 such that
ωkβkj

γ+µ
− ckβkj

b
b+d

= 0 and ck(γ − b)− ak(2b + d+ µ) = 0,
which together with (13) yield

LV ≤ −
n
∑

k=1

[

(ak + ck)(b+ d− σ2
k1)s

2
k + ak

(

b+ µ− σ2
k2

2

)

i2k

]

+
n
∑

k=1

(ak + ck)

(

b

b+ d

)2

σ2
k1

:= F (t)

(14)

Substituting (14) into (12) and integrating both side from 0 to t, we obtain that

0 ≤ EV (x(t)) ≤ V (x(0)) + E

∫ t

0
F (u)du,

where E denotes expectation operator. It implies that

E

∫ t

0

n
∑

k=1

[

(ak + ck)(b+ d− σ2
k1)s

2
k(u) + ak

(

b+ µ− σ2
k2

2

)

i2k(u)

]

du

≤ V (x(0)) +
n
∑

k=1

(ak + ck)

(

b

b+ d

)2

σ2
k1t.

Hence,

lim sup
t→∞

1

t
E

∫ t

0

n
∑

k=1

[

(ak + ck)(b+ d− σ2
k1)

(

Sk(u)−
b

b+ d

)2

+ak

(

b+ µ− σ2
k2

2

)

I2k(u)

]

du

≤
n
∑

k=1

(ak + ck)

(

b

b+ d

)2

σ2
k1.
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Let K1 = min
{

(ak + ck)(b+ d− σ2
k1), ak

(

b+ µ− σ2
k2/2

)}

, then the proof is
completed.

Remark 3. Under the conditions of Theorem 2, the mean square distance
between the solution of system (3) and the disease-free equilibrium E0 of de-
terministic system (2) in time average is no more than a value which is related
to σ2

k1 and σ2
k2. It is concluded that the solution of system (3) oscillates around

E0 and the amplitude depends on the intensities of white noises interference.

Besides, E0 is the disease-free equilibrium of system (3), if σk1 = 0, k =
1, 2, · · · n. Moreover, E0 is also globally asymptotically stable, because

LV ≤ −
n
∑

k=1

[

(ak + ck)(b+ d)s2k + ak

(

b+ µ− σ2
k2

2

)

i2k

]

≤ 0

from the proof of Theorem 2.

4. The dynamic of system (3) around E∗

For deterministic system (2), if R0 > 1, there exists an endemic equilibrium E∗,
which is global stable when γ > b. It is revealed that the disease will prevail in
a population. Obviously, there is no endemic equilibrium of stochastic system
(3). In this section, we will discuss dynamical behaviors of system (3) around
the endemic equilibrium E∗ of system (2).

Theorem 4. If R0 > 1, γ > b, and

σ2
k1 ≤ b+ d, σ2

k2 ≤ b+ µ,

then for any initial valueX(0) ∈ R
2n
+ , the solution of system (3) has the property

lim sup
t→∞

1

t

n
∑

k=1

E

∫ t

0

[

(Sk(u)− S∗
k)

2 + (Ik(u)− I∗k)
2
]

du

≤ 1

K2

n
∑

k=1

[( c̄k
2
S∗
k + pkS

∗2
k

)

σ2
k1 +

( c̄k
2
I∗k + pkI

∗2
k

)

σ2
k2

]

,

where

K2 = min
k=1,··· ,n

{

pk(b+ d− σ2
k1), pk

(

b+ µ− σ2
k2

)}

,
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and c̄k is the cofactor of the k-th diagonal entry of LB̄, k = 1, · · · , n, B̄ =
(

β̄kj
)

n×n
=

(

β̃kjS
∗
kI

∗
j

)

n×n
, and pk, k = 1, 2, · · · , n are positive constants defined

as in the proof.

Proof. Firstly, for system (3), we use the identical technique of Kuniya et
al. [15] for a multi-group SIS model to remove the terms (γ − b)Ik from the
Lyapunov functionals of dSk to that of dIk. For k, j = 1, 2 · · · , n, let

β̃kk = βkk −
γ − b

S∗
k

, β̃kj = βkj k 6= j. (15)

The elements of endemic equilibrium E∗ satisfy

b =
n
∑

j=1

β̃kjS
∗
kI

∗
j + (b+ d)S∗

k ,
n
∑

j=1

β̃kjS
∗
kI

∗
j = (b+ µ)I∗k . (16)

Substituting (15) and (16) into system (3), it follows that

dSk(t) =

[

−
n
∑

j=1

β̃kj(SkIj − S∗
kI

∗
j )− (b+ d)(Sk − S∗

k)

+ (γ − b)Ik

(

1− Sk

S∗
k

)

]

dt+ σk1SkdWk1(t),

dIk(t) =

[ n
∑

j=1

β̃kj

(

SkIj −
S∗
kI

∗
j Ik

I∗k

)

− (γ − b)Ik

(

1− Sk

S∗
k

)

]

dt

+ σk2IkdWk2(t).

(17)

Define a C2-function V : R2n
+ → R

+ as

V (X(t)) =
1

2

n
∑

k=1

pk(Sk − S∗
k + Ik − I∗k)

2

+

n
∑

k=1

c̄k

(

Sk − S∗
k − S∗

k ln
Sk

S∗
k

+ Ik − I∗k − I∗k ln
Ik
I∗k

)

:= V1 + V2,

where pk, k = 1, · · · , n are positive constants to be determined. The Matrix
B̄ is irreducible from the irreducibility of matrix (βkj)n×n. It is follows that
c̄k > 0, k = 1, 2, · · · , n by the property (1) of Theorem 2.3 in Li et al. [13].
Then V is positive definite. Let L be the generating operator of system (17).
Then one has
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LV1 =

n
∑

k=1

pk(Sk − S∗
k + Ik − I∗k) [b− (b+ d)Sk − (b+ µ)Ik]

+
1

2

n
∑

k=1

pk
(

σ2
k1S

2
k + σ2

k2I
2
k

)

=
n
∑

k=1

pk(Sk −S∗
k + Ik −I∗k) [−(b+d)(Sk −S∗

k)− (b+µ)(Ik −I∗k)]

+
1

2

n
∑

k=1

pk
[

σ2
k1(Sk − S∗

k + S∗
k)

2 + σ2
k2(Ik − I∗k + I∗k)

2
]

≤
n
∑

k=1

pk

[

− (b+ d− σ2
k1)(Sk − S∗

k)
2 − (b+ µ− σ2

k2)(Ik − I∗k)
2

− (2b+ d+ µ)(Sk − S∗
k)(Ik − I∗k) + σ2

k1S
∗
k
2 + σ2

k2I
∗
k
2

]

.

And

LV2 =
n
∑

k=1

c̄k

(

1− S∗
k

Sk

)

[

−
n
∑

j=1

β̃kj(SkIj − S∗
kI

∗
j )− (b+ d)(Sk − S∗

k)

+ (γ − b)Ik

(

1− Sk

S∗
k

)

]

+

n
∑

k=1

c̄k
2

(

σ2
k1S

∗
k + σ2

k2I
∗
k

)

+

n
∑

k=1

c̄k

(

1− I∗k
Ik

)

[ n
∑

j=1

β̃kj

(

SkIj −
S∗
kI

∗
j Ik

I∗k

)

− (γ − b)Ik

(

1− Sk

S∗
k

)

]

=−
n
∑

k=1

c̄k

[

(b+ d) + (γ − b)
Ik
S∗
k

](Sk − S∗
k)

2

Sk
−

n
∑

k=1

n
∑

j=1

c̄kβ̄kj ·
[

(

1− S∗
k

Sk

)(SkIj
S∗
kI

∗
j

− 1
)

−
(

1− I∗k
Ik

)( SkIj
S∗
kI

∗
j

− Ik
I∗k

)

]

+

n
∑

k=1

c̄k(γ − b)(Sk − S∗
k)(Ik − I∗k) +

n
∑

k=1

c̄k
2

(

σ2
k1S

∗
k + σ2

k2I
∗
k

)

≤−
n
∑

k=1

n
∑

j=1

c̄kβ̄kj

[

g
( Ik
I∗k

)

− g
( Ij
I∗j

)

+ g
(S∗

k

Sk

)

+ g
(SkIjI

∗
k

S∗
kI

∗
j Ik

)

]
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+

n
∑

k=1

c̄k(γ − b)(Sk − S∗
k)(Ik − I∗k) +

n
∑

k=1

c̄k
2

(

σ2
k1S

∗
k + σ2

k2I
∗
k

)

,

where g(a) = a− 1− ln a. Using property (2) of Theorem 2.3 in Li et al. [13],
we know that

n
∑

k=1

n
∑

j=1

c̄kβ̄kj

(

g
(Ik
I∗k

)

− g
( Ij
I∗j

))

= 0. (18)

According to (18) and the fact that g(a) ≥ 0 for a > 0, it follows that

LV2 ≤
n
∑

k=1

c̄k(γ − b)(Sk − S∗
k)(Ik − I∗k) +

n
∑

k=1

c̄k
2

(

σ2
k1S

∗
k + σ2

k2I
∗
k

)

.

Since γ > b, we choose pk = c̄k(γ−b)
(2b+d+µ) > 0 such that c̄k(γ−b)−pk(2b+d+µ) = 0.

It can be obtained that

LV =LV1 + LV2

≤
n
∑

k=1

pk
[

−(b+ d− σ2
k1)(Sk − S∗

k)
2 − (b+ µ− σ2

k2)(Ik − I∗k)
2
]

+

n
∑

k=1

[( c̄k
2
S∗
k + pkS

∗2
k

)

σ2
k1 +

( c̄k
2
I∗k + pkI

∗2
k

)

σ2
k2

]

:= G(t).

Hence,

dV ≤G(t)dt+

n
∑

k=1

σk1 [c̄k(Sk−S∗
k) + pkSk(Sk−S∗

k + Ik−I∗k)] dWk1(t)

+

n
∑

k=1

σk2 [c̄k(Ik − I∗k) + pkIk(Sk − S∗
k + Ik − I∗k)] dWk2(t).

(19)

Integrating both sides of (19) from 0 to t and taking the expectations, we have

0 ≤EV (X(t)) ≤ EV (X(0)) + E

∫ t

0
G(u)du.
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Therefore,

lim sup
t→∞

1

t
E

∫ t

0

n
∑

k=1

pk
[

(b+ d− σ2
k1)(Sk(u)− S∗

k)
2

+ (b+ µ− σ2
k2)(Ik(u)− I∗k)

2
]

du

≤
n
∑

k=1

[( c̄k
2
S∗
k + pkS

∗2
k

)

σ2
k1 +

( c̄k
2
I∗k + pkI

∗2
k

)

σ2
k2

]

.

Let K2 = min
{

pk(b+ d− σ2
k1), pk

(

b+ µ− σ2
k2

)}

. This completes the proof.

Remark 5. Under the conditions of Theorem 4, the mean square distance
between the solution of system (3) and the endemic equilibrium E∗ of deter-
ministic system (2) in time average is no more than a value which is related
to σ2

k1 and σ2
k2. It means that the solution of system (3) fluctuates around

E∗. Therefore, It is concluded that system (3) is persistent in the mean square
sense, which means that the disease is prevalent.

5. Simulation

In order to demonstrate the theoretical results above, we numerically simu-
late the solution of system (3). Consider a scale-free network whose degree
distribution is P (k) = Ck−r with r = 2.3,

∑n
k=1 P (k) = 1 and maximum con-

nectivity of any node n = 100. Let b = 0.05, d = 0.01, γ = 0.06, µ = 0.05, and
ϕ(k) = akα/(1 + ckα) with α = 0.75, a = 0.8, c = 0.01. Using the Milstein’s
Method, the discretized difference equations of system (3) take the form

Sk,i+1 = Sk,i +∆t

[

b(1− Sk,i − Ik,i)−
n
∑

j=1

βkjSk,iIj,i − dSk,i + γIk,i

]

+σk1Sk,i

√
∆tξk1,i +

σ2
k1

2
S2
k,i∆t

(

ξ2k1,i − 1
)

,

Ik,i+1 = Ik,i +∆t

[ n
∑

j=1

βkjSk,iIj,i − γIk,i − µIk,i

]

+σk2Ik,i
√
∆tξk2,i +

σ2
k2

2
I2k,i∆t

(

ξ2k2,i − 1
)

,

(20)
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Fig. 2: The time series of system (3) with λ = 0.025, R0 =
0.6972, σk1 = 0.012, σk2 = 0.02.
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Fig. 3: The time series of system (3) with λ = 0.025, R0 =
0.6972, σk1 = 0.005, σk2 = 0.008.

where ξk1,i, ξk2,i, k1, k2 = 1, 2, · · · , n, i = 1, 2, · · · , N are independent standard
normal random variables.

First, we choose λ = 0.025, then R0 = 0.6972 < 1 by calculation. Fig. 2 and
Fig. 3 (imaginary lines) depict the solution of deterministic system (2), which
verify the global stability of the disease-free equilibrium E0. From Theorem 2,
the solution of system (3) oscillates around E0, provided that the intensities
are sufficiently weak. Fig. 2 and Fig. 3 (solid lines) illustrate this result under
different intensities.

Next, we choose λ = 0.08 such that R0 = 2.2311 > 1. In this case, the
endemic equilibrium E∗ of system (2) is globally asymptotically stable, which
is shown in Fig. 4 and Fig. 5 (imaginary lines). Besides, it follows from
Theorem 4 that the solution of system (3) fluctuates around E∗, which means
that the disease is prevalent. Fig. 4 and Fig. 5 (solid lines) confirm this.
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Fig. 4: The time series of system (3) with λ = 0.08, R0 =
2.2311, σk1 = 0.012, σk2 = 0.02.
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Fig. 5: The time series of system (3) with λ = 0.08, R0 =
2.2311, σk1 = 0.005, σk2 = 0.008.

By comparing Fig. 2 and Fig. 3, the parameters are all the same but with
different intensities of white noises. Specifically, σk1 = 0.012, σk2 = 0.02 in Fig.
2 and σk1 = 0.005, σk2 = 0.008 in Fig. 3. It easily can be seen that the range
of oscillation around E0 gets smaller with the intensities getting weaker. The
same result is also showed up by comparing Fig. 4 and Fig. 5.

6. Conclusion

A new SIS epidemic model with stochastic perturbation has been proposed
by stochastic differential equations to investigate the dynamical behaviors of
epidemics on scale-free networks. Through theoretical analysis, we obtain that
the existence and uniqueness of solution to the model. Under the conditions
that the intensities of white noises interference are weak enough, the solution of
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system (3) oscillates around the disease-free equilibrium of the corresponding
deterministic model (2) when R0 < 1. Otherwise, the solution of system (3)
fluctuates around the endemic equilibrium of model (2) when R0 > 1, which
means that the disease will be persistent. Moreover, the range of oscillation
gets smaller with the intensities of white noises decreasing.

Because Sk(t), Ik(t) denote the relative densities of the healthy and infected
nodes with degree k, it is necessary to consider whether the solution of system
(3) satisfies Sk(t) + Ik(t) ≤ 1, k = 1, 2, · · · , n. The sufficient condition for
boundedness of the solution is an interesting but challenging problem.
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