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1. Introduction and Preliminaries

Special functions are an ancient part of Mathematics, as solutions of a wide
class of Mathematically and Physically relevant models. These functions play
an important role in many fields of science and engineering. Many researchers
put efforts and achievements to study and develop their theory and applica-
tions. Different expansions of the traditional special functions for example,
Beta function, hypergeometric function, Whittaker function, have been pro-
posed and investigated by many researchers, to be specific, Chaudhry et al.
[4, 5], Lee et al. [14], Ozergin et al. [19], Choi et al. [2], Parmar [23], Dar et
al. [6], Shadab et al. [28], Mubeen et al. [16] and Nagar et al. [18]. A list of
Whittaker functions have been explored (see, for example, [1], [3], [6], [7], [18],
[26], [27] and the references therein). In this sequel, we expect to present a new
generalization of the Whittaker function of the first kind as far as summed up
confluent hypergeometric function introduced by Ghayasuddin et al. [10].

First, we need to survey here the definitions of some known special functions
and their extensions.

Let us start with some historical background of the Euler classical Beta
function. The function B(&1,&2) given by

1
B(61,6) = / W1 - )@ du (1)

0
(R(&1) > 0, R(&2) > 0),

was defined and first studied by Leonhard Euler in the 18th century and was
given its name by Jacques Binet (see [25], [29], see also [15]).

Its relation with well-known classical Gamma function (see [25], see also
[29])

(&) :/000 u e du (R(6) > 0),

L b
is given by L)l (&)
(& + &)

where C' and Z; indicate the well defined collection of complex numbers and
non-positive integers, respectively.

The classical Gauss hypergeometric function o F; and the confluent hyper-
geometric function of first kind ;®; are defined by (see [25], see also [29])

B(&1,&) = (§1,2€ C\ Zy), (2)

14

i) — o (K1)e(k2)r w*
o F1 (K1, Ko; k3 w) %(/{3)4 7 (3)
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(k1,k2 € Cand k3 € C'\ Z;; we O)

and respectively, by

1531 (K23 k3 w) = Z ( o (4)
(=0
(ke € Cand k3 € C'\ Z;; we C),

F(I{1+f)
I(k1)

where (k1)¢ =
e.g. [30]).
Leonhard Euler proposed the following integral representations of the Gauss

hypergeometric function 9F7 and of the confluent hypergeometric function of
first kind 1P (see [25] and [30]):

denotes the Pochammer symbol, or rising factorial (see,

1 1
P, mos iz w) = | |t ) 6)
0

B(ka, k3 — K2

(R(k3) > R(k2) >0 ;larg(l—w)| <7 —€ (0<e<m)),

or equivalently

1 1
F (K, ko; k3;w) = ) / u”“_l(l — u)“3_“1_1(1 —uw)” "2du
0

B(k1, k3 — k1
(R(k3) > R(k1) >0 ;|larg(l —w)| <7 —€ (0<e<m))
and

1
1 )/O w2l (1_u)1€3*/€271 exp(uw) du (6)

Bl = By s — )

(%(/ﬁ)z) > %(Hl) > 0).

By utilizing the arrangements of (1 — uw)™" and exp(uw) in (5) and (6) re-
spectively, we acquire

Ko+ 0, k3 — Hg) wt

(
B(I{Q,Iig — HQ) f‘ (7)

- B
F(k1, ks k3;w) = Y (K1)e
=0

(R(k3) > R(k2) > 0, [w| < 1)

and
¢

L > B(ka + k3 — K2) w
D (Ko; K33 w) = ;: Blrors — 1) 1 (8)
—0 ’
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(R(k3) > R(k2) >0, |w| < 1).
In 1997, Chaudhry et al. [4] proposed the p-extension of the Eulerian in-
tegral of first kind by introducing the exponential factor exp [u(%u)} in the
integrand of (1):

e = [ w6 a-w0s e[ @

(R(&1) > 0, R(&2) > 0,R(p) > 0).
For p =0, (9) reduces to the classical beta function B(&1,&2), i.e.
By(&1,62) = B(&1,62).

Afterwards, Chaudhry et al. [5] utilized the expanded beta function B (&1, &2)
to extend the Gauss and the confluent hypergeometric functions as follows:

14

> By(ke + 0, k3 — k2) w
F . :§ : p ’ — 10
p (K1, K2; s w) e:o(lﬂ)[ B(kg, k3 — K2) /! (10)
(R(r3) > R(ka2) > 0,p >0, |lw| < 1)

and ’

o~ By(ka + (k3 — k) w
P (ko fia: :E : P ’ — 11
p(’i27 ﬂ37w) o B(Iig, R3 — HQ) 4 ( )

(R(k3) > R(k2) > 0,p = 0).

In the same paper, the authors additionally defined the subsequent Euler’s
type integral representations of F,(k1, ko; k3; w) and @, (ko; k3; w), respectively:

1

Fyp(k1, ko; k3 w) = Blra, s — 12) (12)
! a—1 —ka—1 - P
X/o w1 —w)®™ 77 (1 —uw)™ "™ exp [u(l—u)} du
(R(kz) > Rlr2) > 0,p > 0, [arg (1—w)] <)
and . . 1 1
By i) = g [ e 3)

p
X exp [uw u(l u)] du
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(R(k3) > R(k2) > 0,p = 0).

On setting p = 0 in (10)-(13), we get the series and integral representations of
the classical Gauss and confluent hypergeometric functions.

In 2018, Shadab et al. [28] introduced a new generalization of Beta function
as follows:

Bene) = [ a-ws -t a

(a € Ry, R(p) 2 0),

where E,(.) is the classical Mittag-Leffler function of one parameter which is a
natural extension of the exponential function defined by Gosta Mittag-Leffler
as follows (see [17]):

Ea(u) = % m (15)

(u€ C and a € RY).

If we put @ = 1 in (14) then we get the expanded beta function defined by (9),
which further for p = 0 gives the classical Beta function defined by (1).

Shadab et al. [28] considered the following expanded hypergeometric func-
tion and expanded confluent hypergeometric function, by

o)
Bl(ky + £, k3 — ko) w'
Ipa (51,52;53;10):2(“1)6 a (2 - 2 o (16)

— B(ka, k3 — K2)

(R(ks) > R(k2) > 0,0 € RY,p € R, Jw| < 1)

and
o

Z BE (ko + £, k3 — ko) w*

) —
b B /432, 3 — Hg) 0!

’%27’%37 (17)

)

(=
(R(k3) > R(k2) > 0,p € Ry ,a € RT).

The authors in [28] obtained the integral representations of the expanded
Gauss and confluent hypergeometric functions as follows:

1

) B B(KJQ, K3 — /452) (18)

Fp,a(ﬁla R2; k3, W

1 —_—
></0 (1 —w)™ "2t (1 —uw)™™ E, [u(lpuJ du
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(R(k3) > R(k2) > 0,0 € R, pe Ry, |arg (1 —w)| <)
and

1 1
(I)p,a(’@; “3§w) = ) / w2l (1 _ u)ﬁs—liz—l (19)
0

B(ka, k3 — K2
uw o p
X e Ea[ u(l—u)] du
(R(k3) > R(k2) > 0,a € RT,p € Ry).

Furthermore, different expansions of the Beta, Gauss and confluent hyper-
geometric functions have been presented and explored by many researchers from
time to time (see for details [14], [19], [2], [28], [22], [23], [16] etc).

More recently, Ghayasuddin et al. [10] presented a further extension of
the Beta function by involving of the multi-index (2s-parameter) Mittag-Leffler
function:

1
BI(?)\h...7)\57517...755)(&762) _ /0 u&—l (1 o u)&—l (20)

p
X By ) [_u(l - u)} du

(R(&1) >0, R(&2) >0, A; >0, ;€ R,p>0).
Here E Ly 5i)(u) is the multi-index Mittag-LefHler function defined and studied
by Kiryai{ova as follows (see [11], [12], [13]; see also [20], [21], and [33]):

o 0
u
E sy(u) = , (21)
(37):0) %F(él—k)ﬁ)'--f‘(és—kfs)
where s > 11is an integer, A1, -+, A¢ > 0 and 1, -+, 5 are arbitrary real numbers.

Clearly, for s = 2, if we set /\% = q, )\% =0, and §; = 62 = 1 in (20) then we
get the extended Beta function B (&1,&2), given in (14).

Further, setting a@ = 1, (20) reduces to (9), which further for p = 0 gives
the classical Beta function (1).

Ghayasuddin et al. [10] presented the expanded hypergeometric function
and expanded confluent hypergeometric function, respectively, by

FIS)\L'“7A57§17"'765)(,€1’ K/Z; /ﬂ}g;’u}) (22)
_ i (k1)e By 00 (o 40, — hg) w0
- B(k2, k3 — k2) ¢

(=0
(p >0, ]w| <1, %(I{g) > 8‘%(/-@2) >0,\ >0, 9; € R)
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and
(I);S)Al,~~~,A5,61,~~-,65)</€2; a; w) (23)
B i Blg’\l""7’\3’51""’53)(52 + 0, k3 — K2) w7g
B(ka, k3 — K2) !

p >0, %(Hg) > %(HQ) >0, A\; >0, 0; € R)

Remark 1. It is observed that, for s = 2, if we set )%1 =1, )%2 =0, and
d1 = 02 = 1, then (22) and (23) reduce to the known extensions of Gauss and
confluent hypergeometric functions defined in [5].

The authors in [10] also established the following integral representations of
the expanded Gauss and confluent hypergeometric functions by utilizing (16):

1

F 2009 (1o kg w) = B(ka, k3 — K2) (24)
! 2—1 —ka—1 — p
></O u?m (1 —w)™ "7 (1 — uw) KIE(%M&_) [_u(l—u)] du
(p>0, |arg(l —w)| <7, RN(k3) > R(k2) >0, \; >0, &; € R)
and .
DM A 0) (e g ) = (25)

B(ka, k3 — K2)

1
52—1 _ .‘13—/{2—1 uw _ p
(p >0, R(kz) > R(k2) >0, A; >0, 6; € R).

The Whittaker functions emerge in relation to the Whittaker differential
equation (see [9]). These functions have attained a significant extensions due
to their utility in application of mathematics to physical and technical prob-
lems. In addition, they are firmly identified with the confluent hypergeometric
functions, which assume a significant role in several branches of applied math-
ematics and theoretical physics for example, fluid mechanics, atomic structure
theory and electromagnetic diffraction hypothesis.

The Whittaker function M, (w) (which is a modified solution of Whittaker
equation) with respect to the confluent hypergeometric function of first kind
(see [31], [32], see additionally [29]) is defined as

1

M, (w) =ws"2 exp (—%) ¢ (C -n+ %; 2¢ + 1;w> (26)
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(nec,xech',m@)>—; mﬂ%ﬁ@in)>—;>.

In 2013, Nagar et al. [18] generalized the Whittaker function of first kind
by involving the expanded confluent hypergeometric function ®, defined by
Chaudhry et al. [5], as follows:

1 w 1
My (w) = w2 exp (—5) o, <C —n+5;20+ 1;w> (27)

<P2077I€C, 20eC\ 7, ?R(C)>—% and ?R((in)>—;>_

This definition clearly reduces to the simple Whittaker function (26), when we
set p = 0.

2. A new generalized Whittaker function

In this section, we consider and investigate a generalization of the expanded
Whittaker function related to the expanded confluent hypergeometric function
of first kind defined by Ghayasuddin et al. [10]. Some basic properties of this
initiated Whittaker function are additionally determined.

Definition 2. The generalized expanded Whittaker function for A\; >

0, 6; € R and p > 0 is denoted by Mé/\glp Pordty "Ss)(w) and defined as

Aty A 0106
L (D) (28)

1
=uwtz exp (—%) G A 00) <C —nt 520+ 1;w) ;
where s > 1 is an integer, —m < arg(w) < m, R (() > -3, R ((£n) >
—3. n€C, 20eC\Z and <I>](;\1""’/\3’51""’55)(.) is the extended confluent
hypergeometric function of the first kind given in (23).

For s = 2, by setting )%1 =1, )\—12 =0, and §; = d2 = 1 in (28), we get the
generalized Whittaker function defined by Nagar et al. [18], which further for
p = 0 gives the usual Whittaker function M, ¢(w).

Integral representations: By using (20) and (23) in (28), we obtain the
following integral representation of our expanded Whittaker function:

(A1, 35,01, ,05)
17,¢,p

+3 exp (_E) 1
2/ B(C—n+3.¢+n+3)

(w) = w
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1
(=n—=3(1 — )SH1—3 __ P
></O u 2(1—u) 2 exp(uw) E(%i%(&) [ u(l u)} du (29)

(R(¢) > R(C£n) > —% and p >0, \; >0, & € R).

If we set the transformation u = é:—‘z in (29), the alternative representation for

our newly introduced expanded Whittaker function can be acquired

A [ 7)\976 [h 763 — 1 w
MO ) = (5 ) wbtE e (—) (30)
x 1 [ et b {40
B(¢—n+3,(+n+3) Ja (8~ a)
p(8 — )’ }
X By sy |—————| dt,
S
where o and [ are scalars such that (5 — «) > 0.
Taking @ = —1 and 8 = 1 in (30), we obtain another integral representation
for this expanded Whittaker function:
A [ u>\s,5 3t 76.9 — 1 1
wly I w) = 27 (31)

B((—n+3,(+n+3)

1
C=n—3 (1 _ $)SH1—3 wt W

Further, on substituting v = %H in (29), we obtain another integral repre-
sentation for the expanded Whittaker function as follows:

1
MO A8 09) () G e (_E)
0GP 2) B(¢(—-n+ic+n+d)

g1 _ wt p(1 + w)?
X/O ] 2(1+1¢) (2¢+1) exp [14-1}] E(i)’(‘si) [_(t)] dt. (32)

For s = 2, A% =1, 5; = 0, and §; = s = 1 in (29)~(32), we obtain the
integral representations of the expanded Whittaker function defined by Nagar
et al. [18], which further for p = 0 yields the integral representations for the
classical Whittaker function.
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3. Transformation formula of M(/\l’m’)‘s’él’m’és)(

7,¢,p w)

Theorem 3. For p > 0, the following transformation formula holds true:

ALy As,01,0 0 3 ALy As,01,0 0
My P () = (1) MO ). (33)

Proof. By utilizing the definition of our expanded Whittaker function
M(Alv'":)‘szélv"'yés)

nCp (—w), we get

()\1,"',)\5761:"'763) _ — (_ <+l E
Mn,élp (mw) = (-w)*™ exp<2) (34)

1
R (S A S ]
If we replace u by 1 —w in (25), then we obtain

QRN AT (1y; kg w) = exp(w) AN (1y — kg s —w). (35)
Applying (35) in the right side of (34) and afterward by using (28), we get the
claimed result (33). O

4. Integral transforms of Mf]:\cl’;"’)‘s’él""’gs)(w)

This section deals with some well-known integral transforms involving the ex-

panded Whittaker function MO Asd10)

nCop (w), as introduced here.

Theorem 4. For p >0, (2a — 3) > 0 and R(p + () > —3, we have

%) +3 r 1
/ w”™! exp(—aw) M(/\l""’)‘s’61""’55)(Bw)dw = FrrE o+ 64 5)
0

17,,p (a+ g)p+<+%
X F(Aly"' JAs,01 0 75s) C + p + 1 C —n + 1 QC + 1: 26 (36)
P 2’ 2’ 20+ 6)

where

arg <1 — 23—/?-5)’ <.
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Proof. We begin with L.H.S. of (36) and utilizing the integral representation
of the generalized expanded Whittaker function given in (29), we obtain

o0
/0 w’™! exp(—aw) Mé?\&;”’)\S’(sl"“’és)(ﬁw) dw

— 1 > -1 o C+% _,Bi’w
_B<C—n+§,c+n+§)/o w ep(zow) (fu)E exp(=5)

1
Cn=3 (1 — )ST1—3 ___ P
X [/0 u 2 (1 —u) 2 exp(fwu) E(%ﬁ.)v(&) [ a(l— ) du | dw.
Now rearranging in reference of integration and integrate regarding w by uti-
lizing the definition of usual Gamma function, we obtain

/ w’™! exp(—aw) ng/\cl’m”\5’51""’65)(510) dw (37)
0 9

B2 T(p4+ ¢+ 1)
1
(a+ 5 2B —n+5.(+n+3)

! 1 1 2Pu (o)
C=n=35 (1 — )67 3 —
) [/o W (1 2a+ﬁ>

p

Finally, applying the integral representation (18) in the right side of (37),
we show up at our guaranteed outcome (36). O

Corollary 5. On setting 3 = p =1 in (36), we have the following Laplace
transform for the expanded Whittaker function:

3
_ 2672 T(C+ 3)

o0
(A1s+ 3 As,01,0 ,0s)
exp(—aw) M (w)dw (38)
/0 77,C:p (2a+1)<+%
3 1 2
F A1 As,01,0 ,05) Qs Z.9 1: )
x F), C+2,C nt 5 C+,2a+1

Corollary 6. On setting = 2« in (36), we have the following transform
for the expanded Whittaker function:

1
F(p(gof): 2) (39)

oo
/ wP™ exp(—aw) MT(]’\SI’D'””\5’61""’55)(2aw)dw =
D 150,
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1 1
X A (c ot 5t 2 1) :
where p > 0 and R(p + ( + %) > 0.

Theorem 7. For R((+n) > —35 and R({+p) > —3, the following Hankel
transformation holds true:

o0 T(¢+p+3
| w5 w) gyfaw)du - )
0 (aQ + %)2"'4

X i BN f 4L+ D)
prd B((—n+35.¢(+n+3)

(CHnt3)e pu ( 1 >
(aQ—i—i)% o e \V4a? + 1

X

where PC_“ (w) is the Legendre function [29)].

043

Proof. By utilizing (28) and (23), expanding Myg;"’)‘s’&’m’és)(w) in terms

of generalized expanded beta function and rearranging in reference to integra-
tion and summation (which is ensured under the conditions), we acquire

> Ayt Ae01, 0
/0 w Mé,cl,p ! )(w) Jy(aw)dw

:i BY R AR e R
B(¢(—n+3C+n+3) L

x/ wSts exp <_E> Jy(aw)dw.
0 2

On applying the known result [8]

(0.9}
/ exp(—sz) ¢ Jy(az)de =T(C+p+1) r< " B! <§) ,
0 r
(where R(¢C + p) > —1, r = Vs?2+a? and P{“(w) is the Legendre function
[29]), in the above expression and after a little simplification, we obtain our
needed result (40). O
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Remark 8. Note that, if we put s = 2 with /\—11 =1, i =0 and 6, =
d2 = 1, in (40) then we obtain the under mentioned Hankel transform for the
expanded Whittaker function defined by Nagar et al. [18]:

L(C+p+3)

41
(a? + %)%Jr% 0

/ w My ¢ p(w) Jy(aw)dw =
0

o0

S R RIISUEE [SVRS T
— B{-n+5.(tnty) (@+bEa Ve +1

5. Derivative of Mg}i;"’ks’él""’és)(w)

Theorem 9. The following differential formula for our generalized ex-
panded Whittaker function holds true:

d?"

dw”

w 1 (AL, Aa,01,,85) B (C —-n+ %)T
o (-2) b sy ] < ol

where r =0,1,2,- - -

Proof. Here, first we find the 7" derivative of the expanded confluent hy-

pergeometric function @g\l’m a0, ’55)(@; k3;w), which is given as follows (see
10)):
[ ]) d A As,0 )
e | B0 (ag; a5 w)
= (a2)r PO A O105) (g9 4 s g + 75 w). (43)

(a?))r

Now, by applying the definition of the introduced multi-index Whittaker func-
tion on the L.H.S. of (42), we obtain

d" WY ek O Aebr s
dw” [eXp (_§> W Mé,&p ' )(w)
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d’ Ay A1y 0 1
_ DA As,01,0,05) (C_n+2;24+1;w>:| )

dw” p

At last, by applying (43) in the above articulation, and then by utilizing the
definition of multi-index Whittaker function given in (28), we easily get our
claimed result. O

6. Concluding remarks

In the present study we have established a multi-index Whittaker function re-
lated to the expanded confluent hypergeometric function of the first kind [10].
We have also derived some essential properties of this introduced Whittaker
function, namely integral representations, a transformation formula, some in-
tegral transforms and a differential formula.

Moreover, we discuss now about alternative integral representations of the
proposed multi-index Whittaker function.

Note that the multi-index Mittag-Leffler function E 1, ) (u) has the fol-

Ag
lowing relations with the Wright hypergeometric function ,¥,(u) and the Fox
H-function H, " (u) (see for example, Kiryakova [12], [13]):

(1,1)
E 1y s\ (u)=1",, | u (44)
(5;):(6:) m
AZ (6747 %1)1

and
(0,1)
By (@) = Hijpyy |~ | o | (45)
1 (0,1), (1 -8, Ly

Therefore, the integral representations of our newly expanded Whittaker func-
tion given in (29), can be rewritten in terms of the Wright hypergeometric
function and Fox H-function as follows:

1
A AL As 81, ’65)(10) _ w@r% exp <_g>
n.Cop 2/ B(—n+ic+n+d)

1 (171)
« / W3 (1 = )} exp(uw) 10, yﬁiu) du (46)
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and

O At 8) () G

7,6,p

S

exp (_7) 1
2) B(C—n+3.¢C+n+3)

1
x/ uC_"_%(l—u)H”_% exp(uw)
0

(0,1)
x HEL  l——2 du. (47)
B I I (SRR S I
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