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Abstract: Many methods have been introduced previously to solve the equi-
librium problem, of which the extragradient method is efficient. In this paper,
we introduce a modified version of the extragradient algorithm to figure out
equilibrium in a real Hilbert space. The proposed scheme based on an inertial
scheme and explicit step size rule. The method uses a monotonic step size rule
based on local bifunction information rather than of its Lipschitz-type param-
eters or other line search technique. We also prove the convergence theorem
of the given algorithm and discuss its applications in particular classes of equi-
librium classes. Finally, several computational tests are shown to demonstrate
the efficiency of our proposed algorithm.
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1. Introduction

Let K be a non-empty, convex and closed subset of real Hilbert space E and
f : E × E → R be a bifunction satisfying f(x, x) = 0, for each x ∈ K. A
equilibrium problem (EP) for f on K is defined as follows:

Find ς∗ ∈ K such that f(ς∗, y) ≥ 0, ∀ y ∈ K. (EP)

Moreover, Σ represented by the solution set of the problem (EP). The term
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“equilibrium problem” introduced in 1992 by Muu and Oettli [1] and has been
further investigated by Blum and Oettli [2]. The problem (EP) is also known
as the Ky Fan inequality owing to his addition to this field [3]. In this article,
we consider the problem of equilibrium by taking following conditions:

(h1) f : E× E → R is said to be (see [2, 4]) pseudomonotone on K if

f(y1, y2) ≥ 0 =⇒ f(y2, y1) ≤ 0, ∀ y1, y2 ∈ K.

(h2) f : E × E → R is said to be Lipschitz-type continuous [5] on K if there
exist c1, c2 > 0 such that

f(y1, y2) + f(y2, y3) + c1‖y1 − y2‖
2 + c2‖y2 − y3‖

2

≥ f(y1, y3), ∀ y1, y2, y3 ∈ K. (1)

(h3) For any weakly convergent {yn} ⊂ K to y∗ satisfies the following condi-
tion:

lim sup
n→∞

f(yn, y) ≤ f(y∗, y).

(h4) f(y, ·) is convex and sub-differentiable on E for y ∈ E.

In particular, the problem of equilibrium is a general mathematical prob-
lem in the context that it unifies different mathematical problems, i.e., the
fixed point problems, the vector and scalar minimization problems, variational
inequalities, the complementarity problems, problems of the saddle point, Nash
equilibrium problems in non-cooperative games as well as the inverse optimiza-
tion problems [2, 6, 1, 7]. Also, an extensive study on the nature of equilibria
and the description of numerical algorithms for the problem (EP) can be con-
tained in [6, 2, 8, 9] and others in [10, 11, 12, 13, 14].

Meanwhile by using the Korpelevich extragradient method [15], Flam et
al. [16] and Quoc et al. [17], was introduced the following method to solve the
equilibrium problems involving pseudomonotone and Lipschitz-type bifunction:















xn ∈ K,

yn = argmin{χf(xn, y) +
1
2‖xn − y‖2 : y ∈ K},

xn+1 = argmin{χf(yn, y) +
1
2‖xn − y‖2 : y ∈ K},

(2)

where 0 < χ < min
{

1
2c1

, 1
2c2

}

and c1, c1 are Lipschitz-type constants. The
methods in [16, 17] are often considered to as the extragradient method pri-
marily as a result of Korpelevich in [15] to solve the the saddle point problems.
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It is important to note that existing methods involve constant step size
that depends on the information of Lipschitz-type constants of the bifunction
[16, 17, 18, 19]. This can lead to some restriction in the sense of the application
because the Lipschitz-type constants are generally unknown or complicated to
evaluate. Recently, Vinh et al. [20] introduced modifications of the gradient
method for solving pseudo-monotone equilibrium problems with the new step
size rule. But the step size is fixed and may depend on the choice of initial step
size in results in [20].

So, a natural question arises, i.e., “Is it possible to introduce new inertial
strong strongly convergent extragradient-type method with monotone step size
rule to solve problem (EP)”?

In this study, we give a positive answer to this question, i.e., the gradi-
ent method still set up a strong convergence sequence by using a monotonic
step size rule for solving equilibrium problems associated with pseudomono-
tone functions. Motivated by the works of Censor et al. [21] and Hieu et al.
[22] we introduce a new inertial extragradient-type method to solve the problem
(EP) in the setting of an infinite-dimensional real Hilbert space. In particular,
the main contributions in this paper are explained as follows: (i) In this paper,
we introduce an inertial subgradient extragradient method with a monotone
step size rule to solve the equilibrium problem in real Hilbert spaces. (ii) The
applications of these results are studied to solve particular classes of equilibrium
problems in a real Hilbert space.

2. Preliminaries

In this section, we consider some important lemmas and definitions which are
useful to prove the convergence analysis of the proposed algorithm. A metric

projection PK(x) of x ∈ E onto a closed and convex subset K of E is defined by
PK(x) = argmin

y∈K
{‖y − x‖}.

Lemma 2.1. ([23]) Let PK : E → K be a metric projection such that

(i) ‖y1 − PK(y2)‖
2 + ‖PK(y2)− y2‖

2 ≤ ‖y1 − y2‖
2, y1 ∈ K, y2 ∈ E.

(ii) y3 = PK(y1) if and only if 〈y1 − y3, y2 − y3〉 ≤ 0, ∀ y2 ∈ K.

(iii) ‖y1 − PK(y1)‖ ≤ ‖y1 − y2‖, y2 ∈ K, y1 ∈ E.
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Lemma 2.2. ([24]) Assume that Ψ : K → R is a sub-differentiable,
lower semi-continuous and convex function on K. Then, x ∈ K is said to be
a minimizer of Ψ if and only if 0 ∈ ∂Ψ(x) + NK(x), where ∂Ψ(x) denote the
sub-differential of Ψ at x ∈ K and NK(x) denote the normal cone on K at x.

Lemma 2.3. ([25]) Assume that a real sequence {rn} non-negative num-
bers satisfying rn+1 ≤ (1−℧n)rn+℧nðn, for all n ∈ N.Moreover, {℧n} ⊂ (0, 1)
and {ðn} ⊂ R be two sequences such that limn→∞℧n = 0,

∑∞
n=1℧n =

+∞ and lim supn→∞ ðn ≤ 0. Then, limn→∞ rn = 0.

Lemma 2.4. ([26]) Suppose that {rn} be a sequence of real numbers
such that there exists a subsequence {ni} of {n} such that rni

< rni+1
for all

i ∈ N. Then, there is a non decreasing sequence mk ⊂ N such that mk → ∞
as k → ∞, and the following conditions are fullfilled by all (sufficiently large)
numbers k ∈ N:

rmk
≤ rmk+1

and rk ≤ rmk+1
.

In fact, mk = max{j ≤ k : rj ≤ rj+1}.

Lemma 2.5. ([27]) For all y1, y2 ∈ E and ð ∈ R, then subsequent inequal-
ities hold.

(i) ‖ðy1 + (1− ð)y2‖
2 = ð‖y1‖

2 + (1− ð)‖y2‖
2 − ð(1− ð)‖y1 − y2‖

2.

(ii) ‖y1 + y2‖
2 ≤ ‖y1‖

2 + 2〈y2, y1 + y2〉.

A normal cone of K upon x ∈ K is defined by

NK(x) = {z ∈ E : 〈z, y − x〉 ≤ 0, ∀ y ∈ K}.

Let a convex function Ψ : K → R and subdifferential of Ψ at x ∈ K is
defined by

∂Ψ(x) = {z ∈ E : Ψ(y)−Ψ(x) ≥ 〈z, y − x〉, ∀ y ∈ K}.

3. Main results

We given main algorithm in this section that combines a monotonic step size
rule and and inertial technique. The detailed method is is given as follows:
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Algorithm 1

Step 0: Select α > 0, χ0 > 0, µ ∈ (0, 1) and x−1, x0 ∈ K. Moreover, choose
{βn} ⊂ (0, 1) satisfies the conditions: limn→∞ βn = 0and

∑∞
n=1 βn = +∞.

Step 1: Determine αn such that

0 ≤ αn ≤ α̂n and α̂n =

{

min
{

α
2 ,

ǫn
‖xn−xn−1‖

}

if xn 6= xn−1,

α
2 otherwise,

(3)

where ǫn = ◦(βn) a positive sequence, i.e., limn→∞
ǫn
βn

= 0.

Step 2: Determine tn = (1− βn)
[

xn + αn(xn − xn−1)
]

.

Step 3: Determine yn = argmin
y∈K

{χnf(tn, y)+
1
2‖tn− y‖2}. If tn = yn, then

stop and yn is a solution.
Step 4: Determine ωn ∈ ∂2f(tn, yn) and find a set

En = {z ∈ E : 〈tn − χnωn − yn, z − yn〉 ≤ 0}.

Step 5: Determine xn+1 = argmin
y∈En

{χnf(yn, y) +
1
2‖tn − y‖2}.

Step 6: Determine χn+1 in the following way:

χn+1 =















min
{

χn,
µ‖tn−yn‖2+µ‖xn+1−yn‖2

2[f(tn,xn+1)−f(tn,yn)−f(yn,xn+1)]

}

if f(tn, xn+1)− f(tn, yn)− f(yn, xn+1) > 0,

χn otherwise.

Set n := n+ 1 and move back to Step 1.

Lemma 3.1. Assume that conditions (h1)–(h4) are held and {xn} be a
sequence generated by Algorithm 1 is bounded sequence.

Proof. By following Lemma 2.2, we obtain

0 ∈ ∂2

{

χnf(yn, y) +
1

2
‖tn − y‖2

}

(xn+1) +NEn
(xn+1).

For ω ∈ ∂f(yn, xn+1) there exists ω ∈ NEn
(xn+1) such that χnω+xn+1−tn+ω =

0. It follows that

〈tn − xn+1, y − xn+1〉 = χn〈ω, y − xn+1〉+ 〈ω, y − xn+1〉, ∀ y ∈ En.

Due to ω ∈ NEn
(xn+1), implies that 〈ω, y−xn+1〉 ≤ 0, for all y ∈ En. Thus, we
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have
〈tn − xn+1, y − xn+1〉 ≤ χn〈ω, y − xn+1〉, ∀ y ∈ En. (4)

Moreover ω ∈ ∂f(yn, xn+1), we have

f(yn, y)− f(yn, xn+1) ≥ 〈ω, y − xn+1〉, ∀ y ∈ E. (5)

Combining (4) and (5), we get

χnf(yn, y)− χnf(yn, xn+1) ≥ 〈tn − xn+1, y − xn+1〉, ∀ y ∈ En. (6)

Due to the description of En, we have

χn〈ωn, xn+1 − yn〉 ≥ 〈tn − yn, xn+1 − yn〉. (7)

Now, using ωn ∈ ∂f(tn, yn), we obtain

f(tn, y)− f(tn, yn) ≥ 〈ωn, y − yn〉, ∀ y ∈ E.

By letting y = xn+1, we have

f(tn, xn+1)− f(tn, yn) ≥ 〈ωn, xn+1 − yn〉, ∀ y ∈ E. (8)

Combining (7) and (8), we get

χn

{

f(tn, xn+1)− f(tn, yn)
}

≥ 〈tn − yn, xn+1 − yn〉. (9)

By replacing y = ς∗ in (6), we get

χnf(yn, ς
∗)− χnf(yn, xn+1) ≥ 〈tn − xn+1, ς

∗ − xn+1〉. (10)

Since ς∗ ∈ Ep(f,K), we have f(ς∗, yn) ≥ 0. From the pseudomonotonicity of f ,
we get f(yn, ς

∗) ≤ 0. It follows from (10) that

〈tn − xn+1, xn+1 − ς∗〉 ≥ χnf(yn, xn+1). (11)

From description of χn+1, we get

f(tn, xn+1)− f(tn, yn)− f(yn, xn+1) ≤
µ‖tn − yn‖

2 + µ‖xn+1 − yn‖
2

2χn+1
(12)

From (11) and (12), we obtain

〈tn − xn+1, xn+1 − ς∗〉 ≥ χn{f(tn, xn+1)− f(tn, yn)}

−
µχn

2χn+1
‖tn − yn‖

2 −
µχn

2χn+1
‖xn+1 − yn‖

2.
(13)
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Combining (9) and (13), we have

〈tn − xn+1, xn+1 − ς∗〉 ≥ 〈tn − yn, xn+1 − yn〉

−
µχn

2χn+1
‖tn − yn‖

2 −
µχn

2χn+1
‖xn+1 − yn‖

2.
(14)

We have the given formula in place:

−2〈tn − xn+1, xn+1 − ς∗〉 = −‖tn − ς∗‖2 + ‖xn+1 − tn‖
2 + ‖xn+1 − ς∗‖2. (15)

2〈yn − tn, yn − xn+1〉 = ‖tn − yn‖
2 + ‖xn+1 − yn‖

2 − ‖tn − xn+1‖
2. (16)

Combining (14) and (15)-(16), we get

‖xn+1−ς∗‖2 ≤ ‖tn−ς∗‖2−
(

1−
µχn

χn+1

)

‖tn−yn‖
2−

(

1−
µχn

χn+1

)

‖xn+1−yn‖
2. (17)

From expression (3), we have

αn‖xn − xn−1‖ ≤ ǫn, ∀n ∈ N,

and due to limn→∞

(

ǫn
βn

)

= 0 gives that

lim
n→∞

αn

βn

∥

∥xn − xn−1

∥

∥ ≤ lim
n→∞

ǫn

βn
= 0. (18)

By definition of {tn}, we get

∥

∥tn − ς∗
∥

∥ =
∥

∥xn + αn(xn − xn−1)− βnxn − αnβn(xn − xn−1)− ς∗
∥

∥

=
∥

∥(1− βn)(xn − ς∗) + (1− βn)αn(xn − xn−1)− βnς
∗
∥

∥ (19)

≤ (1− βn)
∥

∥xn − ς∗
∥

∥+ (1− βn)αn

∥

∥xn − xn−1

∥

∥+ βn
∥

∥ς∗
∥

∥

≤ (1− βn)‖xn − ς∗‖+ βnΓ1, (20)

where
(1− βn)

αn

βn

∥

∥xn − xn−1

∥

∥+
∥

∥ς∗
∥

∥ ≤ Γ1.

Given χn → χ, there exists a fixed number Υ ∈ (0, 1 − µ) such that

lim
n→∞

(

1−
µχn

χn+1

)

= 1− µ > Υ > 0.

Hence, these exists N1 ∈ N and
(

1−
µχn

χn+1

)

> Υ > 0, ∀n ≥ N1. (21)
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From (17), we obtain

‖xn+1 − ς∗‖2 ≤ ‖tn − ς∗‖2, ∀n ≥ N1. (22)

Combining expressions (20) and (22), we get

‖xn+1 − ς∗‖ ≤ (1− βn)‖xn − ς∗‖+ βnΓ1

≤ max
{

‖xn − ς∗‖,Γ1

}

...

≤ max
{

‖xN1
− ς∗‖,Γ1

}

. (23)

Thus, we can deduce that the sequence {xn} is bounded.

Theorem 3.1. Assume that {xn} be a sequence generated by Algorithm
1 and the conditions (h1)–(h4) are hold. Then, {xn} strongly converges to ς∗.
Moreover, PEP (f, K)(0) = ς∗.

Proof. By using (20) we have

∥

∥tn − ς∗
∥

∥

2
≤ (1− βn)

2‖xn − ς∗‖2 + β2
nΓ

2
1 + 2Γ1βn(1− βn)‖xn − ς∗‖

≤ ‖xn − ς∗‖2 + βn
[

βnΓ
2
1 + 2Γ1(1− βn)‖xn − ς∗‖

]

≤ ‖xn − ς∗‖2 + βnΓ2, (24)

for some Γ2 > 0. From (17) and (24), we get

‖xn+1 − ς∗‖2 ≤ ‖xn − ς∗‖2 + βnΓ2

−
(

1−
µχn

χn+1

)

‖tn − yn‖
2 −

(

1−
µχn

χn+1

)

‖xn+1 − yn‖
2. (25)

Due to the Lipschitz-continuity and pseudo-monotonicity of the bifunction f

implies that the solution set Σ is a closed and convex set (for more details see
[17, 18]). Now, from ς∗ = PΣ(0) and by using Lemma 2.1 (ii), we have

〈0− ς∗, y − ς∗〉 ≤ 0, ∀ y ∈ Σ. (26)

The rest of the proof is divided into the following two parts:

Case 1: Assume that there is a fixed number N2 ∈ N (N2 ≥ N1) such that

‖xn+1 − ς∗‖ ≤ ‖xn − ς∗‖, ∀n ≥ N2. (27)
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Thus, above implies that limn→∞ ‖xn−ς∗‖ exists and let limn→∞ ‖xn−ς∗‖ = l.

From the expression (25), we have

(

1−
µχn

χn+1

)

‖tn − yn‖
2 +

(

1−
µχn

χn+1

)

‖xn+1 − yn‖
2

≤ ‖xn − ς∗‖2 + βnΓ2 − ‖xn+1 − ς∗‖2. (28)

Due to the existence of limit of the sequence ‖xn−ς∗‖ and βn → 0, we conclude
that

‖tn − yn‖ → 0 and ‖xn+1 − yn‖ → 0 as n → ∞. (29)

It continues from (29) that

lim
n→∞

‖tn − xn+1‖ ≤ lim
n→∞

‖tn − yn‖+ lim
n→∞

‖yn − xn+1‖ = 0. (30)

Next, we need to compute

‖tn − xn‖ = ‖xn + αn(xn − xn−1)− βn
[

xn + αn(xn − xn−1)
]

− xn‖

≤ αn‖xn − xn−1‖+ βn‖xn‖+ αnβn‖xn − xn−1‖

= βn
αn

βn
‖xn − xn−1‖+ βn‖xn‖+ β2

n

αn

βn
‖xn − xn−1‖ −→ 0. (31)

The above is providing that

lim
n→∞

‖xn − xn+1‖ ≤ lim
n→∞

‖xn − tn‖+ lim
n→∞

‖tn − xn+1‖ = 0. (32)

The above-mentioned details specifies that the sequences {tn} and {yn} are
bounded. Due to the reflexivity of E and the boundedness of the sequence {xn}
assurances that there have a {xnk

} subsequence such that {xnk
} ⇀ x̂ ∈ E as

k → ∞. Next, we have to prove that x̂ ∈ Σ. Due to the inequality (6), we have

χnk
f(ynk

, y) ≥ χnk
f(ynk

, xnk+1
) + 〈tnk

− xnk+1
, y − xnk+1

〉. (33)

From expression (12), we get

χnk
f(ynk

, xnk+1) ≥ χnk
{f(tnk

, xnk+1)− f(tnk
, ynk

)}

−
µχnk

2χnk+1
‖tnk

− ynk
‖2 −

µχnk

2χnk+1
‖xnk+1 − ynk

‖2.
(34)

We also seen from the last two expressions that

χnk
f(ynk

, y)

≥ χnk
{f(tnk

, xnk+1)− f(tnk
, ynk

)}+ 〈tnk
− xnk+1

, y − xnk+1
〉
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−
µχnk

2χnk+1
‖tnk

− ynk
‖2 −

µχnk

2χnk+1
‖xnk+1 − ynk

‖2, (35)

where y is an arbitrary element in En. From (29), (30),(31), (32) and {xn} that
the right side goes to zero. From χnk

> 0, the condition (h3) and xnk
⇀ x̂, we

have

0 ≤ lim sup
k→∞

f(ynk
, y) ≤ f(x̂, y), ∀ y ∈ En. (36)

The above implies that f(x̂, y) ≥ 0, ∀y ∈ K, and hence x̂ ∈ Σ. It consider that

lim
n→∞

〈ς∗, ς∗ − xn〉

= lim sup
k→∞

〈ς∗, ς∗ − xnk
〉 = 〈ς∗, ς∗ − x̂〉 ≤ 0. (37)

We can evaluate the following owing to limn→∞

∥

∥xn+1 − xn
∥

∥ = 0

lim sup
n→∞

〈ς∗, ς∗ − xn+1〉

≤ lim sup
k→∞

〈ς∗, ς∗ − xn〉+ lim sup
k→∞

〈ς∗, xn − xn+1〉 ≤ 0. (38)

From expression (19), we can write

∥

∥tn − ς∗
∥

∥

2

=
∥

∥xn + αn(xn − xn−1)− βnxn − αnβn(xn − xn−1)− ς∗
∥

∥

2

=
∥

∥(1− βn)(xn − ς∗) + (1− βn)αn(xn − xn−1)− βnς
∗
∥

∥

2

≤
∥

∥(1− βn)(xn − ς∗) + (1− βn)αn(xn − xn−1)
∥

∥

2
+ 2βn〈−ς∗, tn − ς∗〉

= (1− βn)
2
∥

∥xn − ς∗
∥

∥

2
+ (1− βn)

2α2
n

∥

∥xn − xn−1

∥

∥

2

+ 2αn(1− βn)
2
∥

∥xn − ς∗
∥

∥

∥

∥xn − xn−1

∥

∥

+ 2βn〈−ς∗, tn − xn+1〉+ 2βn〈−ς∗, xn+1 − ς∗〉

≤ (1− βn)
∥

∥xn − ς∗
∥

∥

2
+ α2

n

∥

∥xn − xn−1

∥

∥

2
+ 2αn(1− βn)

∥

∥xn − ς∗
∥

∥

∥

∥xn − xn−1

∥

∥+ 2βn
∥

∥ς∗
∥

∥

∥

∥tn − xn+1

∥

∥+ 2βn〈−ς∗, xn+1 − ς∗〉

= (1− βn)
∥

∥xn − ς∗
∥

∥

2
+ βn

[

αn

∥

∥xn − xn−1

∥

∥

αn

βn

∥

∥xn − xn−1

∥

∥

+ 2(1− βn)
∥

∥xn − ς∗
∥

∥

αn

βn

∥

∥xn − xn−1

∥

∥

+ 2
∥

∥ς∗
∥

∥

∥

∥tn − xn+1

∥

∥+ 2〈ς∗, ς∗ − xn+1〉
]

. (39)
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From expressions (22) and (39), we get

∥

∥xn+1 − ς∗
∥

∥

2

≤ (1− βn)
∥

∥xn − ς∗
∥

∥

2
+ βn

[

αn

∥

∥xn − xn−1

∥

∥

αn

βn

∥

∥xn − xn−1

∥

∥

+ 2(1 − βn)
∥

∥xn − ς∗
∥

∥

αn

βn

∥

∥xn − xn−1

∥

∥

+ 2
∥

∥ς∗
∥

∥

∥

∥tn − xn+1

∥

∥+ 2〈ς∗, ς∗ − xn+1〉
]

. (40)

By (30), (38), (40) and applying Lemma 2.3, conclude that
∥

∥xn − ς∗
∥

∥ → 0 as
n → ∞.

Case 2: Assume that there is a subsequence {ni} of {n},

‖xni
− ς∗‖ ≤ ‖xni+1

− ς∗‖, ∀ i ∈ N.

Thus, by Lemma 2.4, is a sequence {mk} ⊂ N as {mk} → ∞,

‖xmk
− ς∗‖ ≤ ‖xmk+1

− ς∗‖ and ‖xk − ς∗‖ ≤ ‖xmk+1
− ς∗‖, for all k ∈ N. (41)

Similar to Case 1, expression (28) provides that

(

1−
µχmk

χmk+1

)

‖tmk
− ymk

‖2 +
(

1−
µχmk

χmk+1

)

‖xmk+1 − ymk
‖2

≤ ‖xmk
− ς∗‖2 + βmk

Γ2 − ‖xmk+1 − ς∗‖2. (42)

Due to βmk
→ 0, we deduce the following:

lim
k→∞

‖tmk
− ymk

‖ = lim
k→∞

‖xmk+1 − ymk
‖ = 0. (43)

It follows that

lim
k→∞

‖xmk+1
− tmk

‖ ≤ lim
k→∞

‖xmk+1
− ymk

‖+ lim
k→∞

‖ymk
− tmk

‖ = 0. (44)

Next, we have to evaluate

‖tmk
− xmk

‖

= ‖xmk
+ αmk

(xmk
− xmk−1)− βmk

[

xmk
+ αmk

(xmk
− xmk−1)

]

− xmk
‖

≤ αmk
‖xmk

− xmk−1‖+ βmk
‖xmk

‖+ αmk
βmk

‖xmk
− xmk−1‖

= βmk

αmk

βmk

‖xmk
− xmk−1‖+ βmk

‖xmk
‖+ β2

mk

αmk

βmk

‖xmk
− xmk−1‖
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−→ 0. (45)

It follows that

lim
k→∞

‖xmk
− xmk+1‖ ≤ lim

k→∞
‖xmk

− tmk
‖+ lim

k→∞
‖tmk

− xmk+1‖ = 0. (46)

We have to use the same justification as in the case 1, such that

lim sup
k→∞

〈ς∗, ς∗ − xmk+1〉 ≤ 0. (47)

Now, using expressions (40) and (41), we have
∥

∥xmk+1 − ς∗
∥

∥

2

≤ (1− βmk
)
∥

∥xmk
− ς∗

∥

∥

2
+ βmk

[

αmk

∥

∥xmk
− xmk−1

∥

∥

αmk

βmk

∥

∥xmk
− xmk−1

∥

∥

+ 2(1− βmk
)
∥

∥xmk
− ς∗

∥

∥

αmk

βmk

∥

∥xmk
− xmk−1

∥

∥

+ 2
∥

∥ς∗
∥

∥

∥

∥tmk
− xmk+1

∥

∥+ 2〈ς∗, ς∗ − xmk+1〉
]

≤ (1− βmk
)
∥

∥xmk+1
− ς∗

∥

∥

2
+ βmk

[

αmk

∥

∥xmk
− xmk−1

∥

∥

αmk

βmk

∥

∥xmk
− xmk−1

∥

∥

+ 2(1− βmk
)
∥

∥xmk
− ς∗

∥

∥

αmk

βmk

∥

∥xmk
− xmk−1

∥

∥

+ 2
∥

∥ς∗
∥

∥

∥

∥tmk
− xmk+1

∥

∥+ 2〈ς∗, ς∗ − xmk+1〉
]

. (48)

The above implies that
∥

∥xmk+1 − ς∗
∥

∥

2

≤
[

αmk

∥

∥xmk
− xmk−1

∥

∥

αmk

βmk

∥

∥xmk
− xmk−1

∥

∥

+ 2(1 − βmk
)
∥

∥xmk
− ς∗

∥

∥

αmk

βmk

∥

∥xmk
− xmk−1

∥

∥

+ 2
∥

∥ς∗
∥

∥

∥

∥tmk
− xmk+1

∥

∥+ 2〈ς∗, ς∗ − xmk+1〉
]

. (49)

Since βmk
→ 0, and

∥

∥xmk
− ς∗

∥

∥ is a bounded. Thus, expressions (45) and (47),
we have

‖xmk+1 − ς∗‖2 → 0, as k → ∞. (50)

It means that

lim
n→∞

‖xk − ς∗‖2 ≤ lim
n→∞

‖xmk+1 − ς∗‖2 ≤ 0. (51)

As a consequence, xn → ς∗. This will conclude the proof of the theorem.
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4. Theoretical application

Now, we study fixed-point problems on the basis of the following conditions:

(S1) S : K → K is called to a κ-strict pseudo-contraction [28] upon K if

‖Ty1 − Ty2‖
2 ≤ ‖y1 − y2‖

2 + κ‖(y1 − Ty1)− (y2 − Ty2)‖
2, ∀ y1, y2 ∈ K;

(S2) sequentially weakly continuous on K if

S(yn) ⇀ S(y∗) for any sequence in K satisfying yn ⇀ y∗.

If we take S is a κ-strict pseudo-contraction and weakly continuous then
f(x, y) = 〈x− Sx, y − x〉 satisfies the conditions (h1)-(h4) (see [29]) and 2c1 =
2c2 =

3−2κ
1−κ

. As a consequence of results in Section 3 we have the following fixed
point theorems.

Corollary 4.1. Assume that S : K → K meet the criterion (S1)-(S2)
and Fix(S,K) 6= ∅. Step 0: Select α > 0, χ0 > 0, µ ∈ (0, 1) and x−1, x0 ∈
K. Moreover, choose {βn} ⊂ (0, 1) meet the conditions, i.e., limn→∞ βn =
0 and

∑∞
n βn = +∞.

Step 1: Evaluate tn = (1 − βn)
[

xn + αn(xn − xn−1)
]

, where αn modified on
each iteration as follows:

0 ≤ αn ≤ α̂n and α̂n =

{

min
{

α
2 ,

ǫn
‖xn−xn−1‖

}

if xn 6= xn−1,

α
2 else.

Step 2: Compute
{

yn = PK

[

tn − χn(tn − S(tn))
]

,

xn+1 = PEn

[

tn − χn(yn − S(yn))
]

,

where En = {z ∈ E : 〈(1−χn)tn+χnS(tn)− yn, z− yn〉 ≤ 0} and χn+1 for next
iteration is evaluated in the following way:

χn+1 =



























min

{

χn,
µ‖tn−yn‖2+µ‖xn+1−yn‖2

2
〈

(tn−yn)−[S(tn)−S(yn)], xn+1−yn

〉

}

if
〈

(tn − yn)− [S(tn)− S(yn)], xn+1 − yn
〉

> 0,

χn else.

Then, the sequence {xn} converges strongly to ς∗ ∈ Fix(S,K).
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Now, we discuss the application of our findings in the problem of classic
variational inequalities [30] and the variational inequalities problem (VIP) for
an operator L : E → E is to

Find ς∗ ∈ K such that
〈

L(ς∗), y − ς∗
〉

≥ 0, ∀ y ∈ K. (VIP)

We assume that the following requirements have been fulfilled:

(L1) Solution set of the problem (VIP), represented by V I(L,K) is non-empty.

(L2) A operator L : E → E is called to be pseudomonotone, i.e.,
〈

L(y1), y2 − y1
〉

≥ 0 =⇒
〈

L(y2), y1 − y2
〉

≤ 0, ∀ y1, y2 ∈ K.

(L3) A operator L : E → E is said to be Lipschitz continuous with constant
L > 0, i.e., there exists L > 0 such that

‖L(y1)− L(y2)‖ ≤ L‖y1 − y2‖, ∀ y1, y2 ∈ K.

(L4) A operator L : E → E is said to be sequentially weakly continuous, i.e.,
{L(yn)} converges weakly to L(y) for each sequence {yn} converges weakly
to y.

Corollary 4.2. Suppose that L : K → E is a function meet the items (L1)-
(L4). Step 0: Select α > 0, χ0 > 0, µ ∈ (0, 1) and x−1, x0 ∈ K. Moreover,
choose {βn} ⊂ (0, 1) meet the conditions, i.e., limn→∞ βn = 0 and

∑∞
n βn =

+∞.

Step 1: Evaluate tn = (1 − βn)
[

xn + αn(xn − xn−1)
]

, where αn modified one
each iteration as follows:

0 ≤ αn ≤ α̂n and α̂n =

{

min
{

α
2 ,

ǫn
‖xn−xn−1‖

}

if xn 6= xn−1,

α
2 else.

(52)

Step 2: Evaluate
{

yn = PK(tn − χnL(tn)),

xn+1 = PEn
(tn − χnL(yn)),

where En = {z ∈ E : 〈tn−χnL(tn)−yn, z−yn〉 ≤ 0} and χn+1 for next iteration
is evaluated in the following manner:

χn+1 =















min
{

χn,
µ‖tn−yn‖2+µ‖xn+1−yn‖2

2〈L(tn)−L(yn),xn+1−yn〉

}

if
〈

L(tn)− L(yn), xn+1 − yn
〉

> 0,

χn else.
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Then, the sequences {xn} converge strongly to ς∗ ∈ V I(L,K).

5. Numerical illustrations

In this section, we give some numerical example to show the implementation of
our proposed method. Information about the control parameters considered as
follows: (1) Algorithm 3.2 in [18] (EgA-1): χ = 1

3c1
, αn = 1

5(n+2) , error term =

‖xn−yn‖
2. (2) Algorithm 3 in [20] (EgA-2): χ = 1

3c1
, θ = 0.40, ǫn = 1

(n+1)2
, γn =

1
5(n+2) , βn = 5

10 (1−γn), error term = ‖tn−yn‖
2. (3) Algorithm 1 (EgA-3): χ0 =

0.01, µ = 0.40, α = 0.40, ǫn = 1
(n+1)2

, βn = 1
20(n+2) , error term = ‖tn − yn‖

2.

Example 5.1. Let a bifunction f is defined as follows:

f(x, y) = 〈Px+Qy + c, y − x〉, x, y ∈ K,

while c ∈ RN and matrices P , Q are of order N. A matrix P is symmetric
positive semi-definite and the matrix Q−P is symmetric negative semidefinite
and Lipschitz-type constants c1 = c2 = 1

2‖P − Q‖ (see [17] for details). The
feasible set C ⊂ RN is defined by

K := {x ∈ R
N : −10 ≤ xi ≤ 10}.

Conclusion

We have studied a extragradient-type method for determining the numerical
solution of equilibrium problem in real Hilbert spaces and also prove that the
generated sequence converges strongly to the solution. Numerical conclusions
were drawn to explain the numerical effectiveness of our algorithms in contrast
to other methods. These experimental studies showed that inertial impact
improve the efficiency of the iterative sequence in this context.
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Figure 1: Example 5.1: Numerical efficiency comparison when N =
2 and the number of iterations are 36, 9, 5 and elapsed time are
0.776432, 0.217280, 0.094933, respectively.
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Figure 2: Example 5.1: Numerical efficiency comparison whenN = 5
and the number of iterations are 54, 14, 10 and elapsed time are
1.208463, 0.366344, 0.166927, respectively.
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