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Abstract: A new method for assessing the intensity of successive instan-
taneous emissions of an air pollutant from a point source is presented. The
intensity parameters were obtained using a time series of the pollutant con-
centration detected at a monitoring site. A well-posed atmospheric dispersion
model is used to estimate the transport of the pollutant from the source. The
parameter estimation method is formulated as an optimization problem. The
optimal point determines the intensity of instantaneous emissions and is cal-
culated as the solution of a positive system of linear equations. Particular
solutions of the dispersion model are used to adjust the matrix and the right-
side of the linear system. The capabilities of the parameter estimation method
are demonstrated using one-dimensional synthetic numerical examples.
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1. Introduction

The emission rate of a pollution source is fundamental information for the envi-
ronmental research. In particular, the air quality models use such information
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to forecast the pollution levels in a region at different time scales. This makes
it possible to carefully assess the risk to the population and take the necessary
measures in advance to combat air pollution [13, 15]. As a consequence, the
development of methods for assessing the intensity of emissions of pollutants is
of paramount importance for emergency assessment and response to the impact
of hazardous substances accidentally released into the atmosphere as a result of
accidents at industrial enterprises and nuclear power plants [1, 9]. It is impor-
tant to note that the estimation of emission rates is often an ill-posed problem
for which there is no general method for solving, and each developed method
solves the estimation problem taking into account certain simplifications in the
system [2].

This work presents a new method for assessing the emission rate Q(t) of a
point source of air pollution. It is assumed that the source emits a pollutant
at a known point r0, at a rate Q(t) in the form of N successive instantaneous
emissions:

Q(t) =

N∑

i=1

Qiδ(t− ti),

where the Dirac function δ sets a unit impulse at each known instant ti. The
parameter estimation problem consists in the approximation of the intensity
coefficients Qi. This problem is solved using the time series of the pollutant
concentration observed at the monitoring site. The method is formulated as
minimization of a quadratic function, and the emission rates Qi are obtained
as the solution of a positive system of linear equations of size N × N . The
transport of the pollutant in the atmosphere is estimated by means of a well-
posed linear dispersion model. Particular solutions of the dispersion model are
used to calculate the matrix and the right-hand side of the positive system.
The three-dimensional dispersion model is described in Section 2. Some useful
properties related to the solution of positive systems of linear equations and
its sensitivity are presented in Section 3. The formulation of the parameter
estimation method is presented in Section 4. Finally, Section 5 contains several
synthetic numerical examples using a one-dimensional version of the dispersion
model.

2. Dispersion model

In this section, a three-dimensional linear dispersion model is briefly described
[10]. The model governs the dispersion of a primary pollutant emitted into
the atmosphere by point, line or area sources. It is useful for establishing a
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linear relationship between emissions and concentrations of a single (passive)
pollutant such as CO, SO2, NOx or soot [3].

Let D =D× (0,H) be a simply connected bounded domain in R3 with the
boundary ∂D = S0 ∪ S ∪ SH which is the union of the cylindric lateral surface
S, the base of the domain S0 (generally not horizontal), and top cover SH at
z = H . The dispersion model for forecasting the concentration φ(r,t) of a
primary pollutant in the domain D and short-time interval (0, T ) is defined by
the following equations:

∂φ

∂t
+U·∇φ+ σφ−∇ · (µ∇φ)− ∂

∂z
µz

∂φ

∂z
+∇ · φs = f(r, t), (1)

φs = −νsφe3 in D, (2)

φ(r, 0) = φ0(r) in D, (3)

µ∇φ · n− Unφ = 0 on S−, (4)

µ∇φ · n = 0 on S+, (5)

µ̂∇φ · n = 0 on S0, (6)

µz
∂φ

∂z
− Unφ = −νsφ on S−

H , (7)

µz
∂φ

∂z
= −νsφ on S+

H , (8)

∇ ·U =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 in D. (9)

Here φ0(r) ≥ 0 is the distribution of the pollutant in the domain D at the
initial moment t = 0, σ(r,t) ≥ 0 is the chemical transformation coefficient, and
µ(r,t) > 0 and µ̂(r,t) > 0 are the turbulent diffusion arrays:

µ =

(
µx(r, t) 0
0 µy(r, t)

)
and

µ̂ =




µx(r, t) 0 0
0 µy(r, t) 0
0 0 µz(r, t)


 . (10)

In equation (1), the term ∇ · φs describes the change in pollutant concen-
tration because of sedimentation at a constant rate νs > 0. It is assumed that
the wind velocity U(r,t) = (u, v, w) is known in D and satisfies the continuity
equation (9).
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Assume that the forcing

f(r, t) =
M∑

i=1

fi(r, t), (11)

is formed by point, line or area emission sources fi(r, t) located in the domainD,
i = 1, ...,M . In particular, each point emission source fi(r, t) can be described
through its emission rate Qi(t) and emission site ri, that is, fi(r, t) = Qi(t)δ(r−
ri), where δ(r − ri) is the Dirac delta centered at ri ∈ D. On the other hand,
the domain of function fi(r, t) is reduced to a line Γi ⊂ D in the case of a
linearly distributed source, and to a 2D region Ai ⊂ D in the case of a surface
source fi(r, t). It is important to note that each linearly distributed source, as
well as each source distributed over an area, can be approximated by the sum
of point sources [11].

The conditions set on the open boundary ∂D of domain D lead to the well-
posed problem in the sense of Hadamard [4]. The boundary S is divided into
the outflow part S+ where Un ≥ 0 (advective pollution flow is directed out of
D) and the inflow part S− where Un < 0 (advective pollution flow is directed
into D). Here Un = U · n denotes the projection of the velocity vector U on
the outward unit normal n to S. The region D is assumed to be large enough
to include all important pollution sources. Thus, it is supposed that there is no
sources outside D, and by condition (4), the total (diffusion plus advective) flow
of pollutant is zero through the inflow part S−. The flow of pollutant is non-
zero only through the outflow part S+, besides, according to (5), the diffusion
flow of pollutant through S+ is assumed to be negligible as compared with
the corresponding advective flow. Equation (6) indicates no flow of pollutant
through the base S0, since U · n and νs are both zero at S0. The conditions (7)
and (8) have a similar meaning at the boundary SH , where the sedimentation
of particles is additionally taken into account. In general, equations (7) and
(8) are necessary because w = 0 on S0 and therefore condition (9) leads to a
non-zero vertical velocity component at SH :

w(x, y, z, t) = −
∫ z

0

(
∂u

∂x
+

∂v

∂y

)
dz. (12)

With such boundary conditions, problem (1) - (9) is mathematically well-
posed in the sense of Hadamard [4], i.e., its solution exists, is unique and con-
tinuously depends on the initial condition and forcing [14]. This follows from
the fact that the problem operator

Aφ = U·∇φ+ σφ−∇ · (µ∇φ)− ∂

∂z
µz

∂φ

∂z
+∇ · φs, (13)
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is nonnegative:

(Aφ, φ) =

∫

D

∥∥∥µ̂
1

2∇φ
∥∥∥
2

2
dr+

∫

D

σφ2dr+
1

2

∫

S0

νsφ2 |e3 · n| dS

+

∫

SH

νsφ2dS +
1

2

{∫

S+∪S+

H

Unφ
2dS −

∫

S−∪S−

H

Unφ
2dS

}
≥ 0. (14)

Here (φ, η) =
∫
D
φ η dr and ‖φ‖2 =

(∫
D
φ2dr

)1/2
define the inner product and

the norm in the Hilbert space L2(D), respectively. Therefore, it can be shown
[14] that

‖φ‖2 ≤ T max
0≤t≤T

‖f(r, t)‖2 + ‖φ0‖2. (15)

Inequality (15) guarantees the uniqueness of the solution and its continuous
dependance on the initial condition and forcing.

The boundary conditions are also physically appropriate, since the integra-
tion of transport equation (1) over domain D leads to a mass balance equation

∂

∂t

∫

D

φdr =

M∑

i=1

∫

D

fi(r, t)dr

−
∫

S+∪S+

H

UnφdS −
∫

D

σφdr−
∫

S0

νsφ |e3 · n| dS. (16)

Thus, the total mass of the pollutant increases due to the nonzero emission rates
fi(r, t), and decreases because of advective outflow of the pollutant through the
boundary S+∪ S+

H and its chemical transformation (σ 6= 0) and sedimentation
on the ground (νs 6= 0).

For the numerical solution of the dispersion model (1)-(9), a balanced and
absolutely stable second-order difference scheme, the splitting method, and the
Crank-Nicholson schemes are used, [7].

3. Positive systems of linear equations

A system of linear equations Λx = b is called positive when the matrix Λ is
positive definite. By definition, Λ is a positive definite N × N matrix if it is
symmetric (Λ = Λt) and xtΛx > 0 for all x ∈ RN , x 6= 0. Let us consider the
eigenvalue problem Λvi = λivi for a positive definite matrix Λ. Hereafter, the
eigenvalues of a real symmetric matrix Λ are denoted as λ1, λ2, ..., λN , while
v1,v2, ...,vN are the corresponding orthonormal eigenvectors.
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Let us recall the main properties of solutions of positive systems of linear
equations, which will be used in Sections 4 and 5.

Property 1. If Λ is a real symmetric matrix, then all of the eigenvalues
of Λ are real numbers, and the corresponding eigenvectors can be chosen so as
to form an orthonormal basis in the Euclidean space RN .

Indeed, by the spectral theorem [5], Λ can be factorized as Λ = V λV −1

where V −1 = V t is an orthogonal matrix with its column vectors as the or-
thonormal eigenvectors of Λ and
λ = diag{λ1, λ2, · · · , λN} is the diagonal matrix formed by the eigenvalues of
Λ.

Property 2. The eigenvalues of a positive definite matrix Λ are positive
numbers.

Indeed, let Λvi = λivi where ‖vi‖ = 1. Then vt
iΛvi = λiv

t
ivi = λi ‖vi‖2

and λi = vt
iΛvi > 0.

Property 3. Every positive definite matrix Λ is a nonsingular matrix.

Indeed, it is well known that det(Λ) = λ1λ2 · · ·λN . Therefore, due to
Property 2, det(Λ) > 0.

Lemma 1. The unique solution of a positive system of linear equations
Λx = b can be expressed as follows:

x =
N∑

i=1

vt
ib

λi
vi. (17)

Proof. The linear system Λx = b has a unique solution because Λ is a
nonsingular matrix (see property 3), and hence, x = Λ−1b is such a solution.
Using the factorization Λ = V λV −1 again, we obtain

x = Λ−1b =(V λV −1)−1b = (V λ−1)(V tb).

The matrix V λ−1 can be written by columns as follows:

V λ−1 = (
1

λ1
v1,

1

λ2
v2, ...,

1

λN
vN ),
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and the column vector V tb is expressed in the form

V tb =




vt
1b

vt
2b
...

vt
Nb


 .

Consequently, x = (V λ−1)(V tb) =
N∑
i=1

v
t

i
b

λi
vi.

The equation (17) allows estimating the sensitivity of the solution x of a
linear system Λx = b with respect to small perturbations δb in the RHS b.

Theorem 1. Let x be the solution of a positive system Λx = b, and let δb
be a variation in its RHS b. If δx is the corresponding variation in the solution
x, then

‖δx‖2 =
N∑

i=1

(
vt
iδb

λi

)2

, (18)

where ‖δx‖2 = (δx)t δx.

Proof. The linear system Λ(x+ δx) = b+δb is positive, and by Lemma 1,
x+ δx is written as

x+δx =
N∑

i=1

vt
i(b+δb)

λi
vi =

N∑

i=1

vt
ib

λi
vi +

N∑

i=1

vt
iδb

λi
vi = x+

N∑

i=1

vt
iδb

λi
vi,

and hence, δx =
N∑
i=1

v
t

i
δb
λi

vi.

Since the eigenvectors are orthonormal, ‖δx‖2 = (δx)t δx =
N∑
i=1

(
v
t

i
δb
λi

)2
.

Corollary 1.

‖δx‖ ≤
√
N

λ1
‖δb‖ . (19)

Proof. Let 0 < λ1 ≤ λ2 ≤ ... ≤ λN . Using the Schwarz inequality∣∣vt
iδb

∣∣≤‖vi‖ ‖δb‖, we obtain

(
vt
iδb

λi

)2

≤
(‖vi‖ ‖δb‖

λ1

)2

≤
(‖δb‖

λ1

)2

,
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for every index i. Since ‖vi‖2 = 1, (18) leads to

‖δx‖2 =
N∑

i=1

(
vt
iδb

λi

)2

≤
N∑

i=1

(‖δb‖
λ1

)2

=
‖δb‖2
λ2
1

N.

The last estimate implies (19).

The inequality (19) indicates that the linear system is well-conditioned ([12])
if the ratio

√
N/λ1 is not large. This estimate will be used in Section 5 to assess

the quality of the calculated intensity parameters.

4. Method for estimating the intensity of an unknown source

Now, suppose a point source emits a pollutant into the atmosphere as N suc-
cessive instantaneous emissions:

Q(t) =

N∑

i=1

Qiδ(t− ti), (20)

where the Dirac function δ sets a unit impulse at each moment ti. It is also
assumed that the site of emission r0 and the moments ti are known. The goal is
to develop a method for estimating the emission rates Qi using the time series
of the concentration of the pollutant {φd(R, τk)}, obtained at the monitoring
site R ∈ D and at times τk ∈ (0, T ). To describe the method, we write the
dispersion model (1) - (9) in the operator form

∂φ

∂t
+Aφ = f(r, t) +Q(t)δ(r − r0), φ(r, 0) = φ0(r) in D, (21)

where A is defined by (13) and boundary conditions, φ(r, t) is the concentration
of the pollutant at the point r ∈ D and at the moment t ∈ (0, T ), f(r, t)
describes the emission rates of known sources located in the domain D, φ0(r)
is the distribution of the pollutant at the initial moment t = 0, Q(t)δ(r − r0)
represents the unknown point source, Q(t) is given by (20), and δ(r− r0) is the
Dirac delta function centered at the emission point r0 ∈ D.

Since the dispersion model (21) is linear, its solution φ(r, t) can be repre-
sented as

φ(r, t) = C0(r, t) + C(r, t) +

N∑

i=1

QiCi(r, t), (22)
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where C0 is the solution of the problem

∂C0

∂t
+AC0 = 0, C0(r, 0) = φ0(r) in D. (23)

C is the solution of the problem

∂C

∂t
+AC = f(r, t), C(r, 0) = 0 in D, (24)

and for each i (i = 1, ..., N), Ci is the solution of the problem

∂Ci

∂t
+ACi = δ(t − ti)δ(r − r0), Ci(r, 0) = 0 in D. (25)

Note that all solutions to problems (23)-(25) can be calculated in advance,
regardless of the intensity parameters Qi.

The method for estimating the emission rates Qi is formulated as an un-
constrained minimization problem:

Min Φ =
1

2

T∫

0


φd(R, t) −C0(R, t)− C(R, t)−

N∑

j=1

QjCj(R, t)



2

dt

+
ε

2

N∑

j=1

Q2
j , (26)

where ε is a positive parameter.
Without loss of generality, it is assumed that the concentration of the pol-

lutant φd at monitoring site R is known as a function of the continuous time
variable t ∈ (0, T ). The minimization process allows the function φ(R, t) to ap-
proach the concentration data φd(R, t) by decreasing the first (integral) term of
the function Φ, while the sum of the squares of the parameters Qi (the second
term of the function Φ) is kept as small as possible. Note that ε is a weighting
factor that affects the minimization process. For small values of ε, the min-
imization process focuses on decreasing the integral term of the function Φ,
i.e., on approximating φ(R, t) to the concentration data φd(R, t). On the other
hand, for large values of ε, the minimization process focuses on decreasing the
second term of the function Φ, and therefore the values Qi of the solution to
problem (26) are close to zero. The following simple example explains this be-
havior. Let Φ(x) = 1

2(d − x)2 + ε
2x

2 be a real function. The minimum of Φ is

attained at the point xε = d
1+ε . Thus, xε tends to d as ε tends to zero, that
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is, the first term of the function Φ is minimized. However, xε → 0 as ε → ∞ ,
i.e., the second term of the function Φ is minimized. The ε parameter has some
additional advantages which will be presented below.

The necessary condition for minimizing the function (26) (∇Φ = 0) requires
solving the system of equations:

∂Φ

∂Qi
=

N∑

j=1

Qj

T∫

0

Ci(R, t)Cj(R, t)dt + εQi−

T∫

0

[φd(R, t) − C0(R, t) − C(R, t)]Ci(R, t)dt = 0,

for i = 1, ..., N .

In matrix form, this system of linear equations can be written as

ΛQ = b, (27)

where Λ = G+ εI, G is the square real matrix with entries

Gij =

T∫

0

Ci(R, t)Cj(R, t)dt (i, j = 1, .., N),

I is the identity matrix of order N , Q = (Q1, ..., QN )t is the column vector that
contains the unknown intensity parameters, and b is the RHS column-vector

with components bi =
T∫
0

[φd(R, t) − C0(R, t)− C(R, t)]Ci(R, t)dt, i = 1, ..., N .

In the particular case when the unknown point source is the only pollution
source in D then C0(r, t) = C(r, t) = 0, since f = 0 and φ0 = 0, and each

component of vector b of system (27) is reduced to bi =
T∫
0

φd(R, t)Ci(R, t)dt,

i = 1, ..., N .

Since G is a real symmetric N×N matrix, Λ is also a real symmetric N×N
matrix. The following theorems establish other important features of matrix Λ
and linear system ΛQ = b.

Theorem 2. For every ε > 0, the matrix Λ = G+ εI is positive definite.
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Proof. The symmetric matrix G is positive semidefinite since

xtGx =

N∑

i=1

N∑

j=1

xixj

T∫

0

Ci(R, t)Cj(R, t)dt

=

T∫

0

[x1C1(R, t) + · · ·+ xNCN (R, t)]2 dt ≥ 0,

for x ∈ RN .
Therefore, for every ε > 0, xtΛx = xtGx+εxtx ≥ε ‖x‖2 > 0 for all x ∈ RN ,

x 6= 0.

Theorem 3. The solution of linear system (27) is the global minimum of
function Φ.

Proof. Due to Theorem 2, the matrix Λ is nonsingular (see property 3).
Thus, for every ε > 0, the system (27) has a unique solution Qε. Moreover, Φ
is a strictly convex function because its HessianH =

(
∂2Φ/∂Qi∂Qj

)
N×N

= Λ is
a positive definite matrix [6]. Consequently, Qε minimizes the function Φ, since
∇Φ(Qε) = 0 and H(Qε) = Λ is a positive definite matrix, [6]. Furthermore,
since Φ is a strictly convex function, then Qε is the unique global minimum of
function Φ, [6].

Since the matrix G can be singular, the introduction of parameter ε in the
optimization problem (26) is necessary to assure a solution of linear system
(27). Such solution denoted as Qε, is the solution of the parameter estimation
problem.

We now discuss the sensitivity of such a solution, as well as the crite-
rion for choosing the parameter ε. According to property 1, the eigenvalues
λ1, λ2, ..., λN of matrix G are real numbers and the corresponding eigenvec-
tors v1,v2, ...,vN form an orthonormal basis for space RN . Moreover, G is
a positive semidefinite matrix and therefore λi ≥ 0 for all i (see the proofs
of Property 2 and Theorem 2). Further, the eigenvalues of matrix Λ are
λ1 + ε, λ2 + ε, ..., λN + ε and v1,v2, ...,vN are the corresponding eigenvectors.
Let us suppose that 0 < ε ≤ λ1 + ε ≤ λ2 + ε ≤ · · · ≤ λN + ε. Due to Lemma 1
and inequality (19), the solution Qε is

Qε =

N∑

i=1

vt
ib

λi + ε
vi, (28)
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and

‖δQε‖ ≤
√
N

λ1 + ε
‖δb‖ , (29)

where δb represents a variation in the RHS b of system (27), while δQε is the
corresponding variation in the solution Qε. Note that δb is usually present
in system (27) due to errors in the data on the concentration of pollutant φd.
Also note that in inequality (29), the factor

√
N/(λ1 + ε) is used to evaluate

the quality of the intensity parameter computation. Indeed, if this coefficient
is not a large number, then the error ‖δQε‖ is controlled by the error ‖δb‖,
that is, the quality of the solution Qε is comparable to the quality of the data
used in b. But if λ1 is a very small number, one can use a positive parameter
ε in order to avoid division by this number and, therefore, prevent the growth
of errors in the solution. For example, if N = 10, λ1 = 10−6 and ε = 0,
then

√
N/(λ1 + ε) = 106

√
10, and therefore, according to (29), the error ‖δQε‖

can be huge. However, if the value of parameter ε is taken as ε = 0.1, then√
N/(λ1 + ε) ≈ 10

√
10, and the error ‖δQε‖ is under control. Conversely, if λ1

is not too small, then the parameter ε can be taken as a very small number or
equal to zero.

5. Parameter estimation example

To demonstrate the capabilities of the new method, we now consider a simple
example of parameter estimation. Let us assume that the concentration of the
pollutant is calculated using the one-dimensional dimensionless version of the
dispersion model (1) - (9):

∂φ

∂t
+ u

∂φ

∂x
− µ

∂2φ

∂x2
+ σφ = Q(t)δ(x − x0), 0 < x < L, 0 < t < T, (30)

µ
∂φ

∂x
(0, t) − uφ(0, t) = 0, 0 < t, (31)

µ
∂φ

∂x
(L, t) = 0, 0 < t, (32)

φ(x, 0) = 0, 0 < x < L. (33)

Here, φ(x, t) is the concentration of the pollutant in the domain D = (0, L) and
time interval (0, T ). The positive parameters u, µ and σ are the wind veloc-
ity, the diffusion coefficient and the pollutant transformation rate, respectively.
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Point x0 is the emission site, and instantaneous emissions occur at times ti, i.e.,
emission rate Q(t) is determined by formula (20):

Q(t) =

N∑

i=1

Qiδ(t− ti). (34)

It is also assumed that the point source located at x0 is the only source of
pollution in D, and therefore φ0 = 0. We take u = 0.25, µ = 0.05, σ = 0.001,
L = 1, T = 40, x0 = 0.2, and R = 0.8 is the monitoring site. It is assumed
that there were five instantaneous emissions in (0, T ) (N = 5), which occurred
at the moments t1 = 1, t2 = 5, t3 = 7, t4 = 12 and t5 = 14.

Since φ0 = 0 and f = 0, the solutions of problems (23) and (24) are equal
to zero: C0 = 0 and C = 0. For the monitoring point x = R, solutions Ci(x, t)
to problems (25), i = 1, ..., 5, are shown in Figure 1. It can be seen that the
graphics Ci(R, t), i = 2, ..., 5, are the translation of the curve C1(R, t). This
is due to the use of constant coefficients in the transport equation (30), which
simulate the steady-state conditions of dispersion in the atmosphere.

To test the efficiency of the parameter estimation method, the following in-
tensity parameters Qi were set: Q1 = 10, Q2 = 25, Q3 = 3, Q4 = 15 and Q5 =
20. According to equation (22), these parameters determine the concentration

of the pollutant at the monitoring point x = R: φ(R, t) =
5∑

i=1
QiCi(R, t). Thus,

the synthetic concentration data can be written as φd(R, t) = φ(R, t)+δφ(R, t),
where δφ(R, t) is a small variation. In this example, δφ(R, t) = s∗maxφ(R, t)∗
rand[−0.5, 0.5], where ”rand” is the function that generates random values uni-
formly distributed in the interval [−0.5, 0.5], and the coefficient s determines
the amplitude of variations.

Figures 2, 3 and 4 show the synthetical concentration data obtained for
s = 0, s = 0.05 and s = 0.1, respectively. The intensity parameters are now
estimated for each of these three datasets.

The components of the vector b and the entries Gij of the matrix G of the
linear system (27) are calculated using the formulas

bi =

T∫

0

φd(R, t)Ci(R, t)dt, i = 1, ..., 5,

and

Gij =

T∫

0

Ci(R, t)Cj(R, t)dt, i, j = 1, .., 5.
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Figure 1: The solutions Ci(x, t) of problems (25) at the monitoring
point x = R.

In addition, the matrix λ = diag{λ1, λ2, · · · , λN} formed from the eigenval-
ues of matrix G, and the matrix V formed from the corresponding eigenvectors
vi of G (see (28)), were obtained using the MATLAB function eig, [8]:

λ =




0.95 0 0 0 0
0 1.10 0 0 0
0 0 2.47 0 0
0 0 0 3.99 0
0 0 0 0 4.76




and

V =




0.13 −0.12 0.91 −0.26 0.23
−0.56 0.44 −0.11 −0.43 0.53
0.57 −0.34 −0.37 −0.32 0.54
−0.44 −0.55 0.02 0.54 0.44
0.37 0.59 0.09 0.58 0.39




.

Since the smallest eigenvalue is not a small number (λ1 = 0.9523), the
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Figure 2: The synthetical concentration data φd(R, t) = φ(R, t) for
the parameter s = 0.

parameter ε is chosen as a small value: ε = 10−6. Thus, the ratio
√
N/(λ1+ε) =

2.34, i.e., problem (27) is well-conditioned, and by (29), the error ‖δQε‖ is of
the same order as the error ‖δb‖. That is, the solution Qε is of the same quality
as the data. To verify this, the three experiments are considered with different
values of s : s = 0, s = 0.05 and s = 0.1 . For s = 0, φd(R, t) = φ(R, t)
(see Figure 2), that is, the relative error in φ is zero (‖φd − φ‖ / ‖φ‖ = 0) and
δb = 0. The solution of linear system (27) is Qε = Q = (10, 25, 3, 15, 20)t ,
and its relative error is also zero (‖Qε −Q‖ / ‖Q‖ = 0), as it should be. For
s = 0.05, the concentration data φd are shown in Figure 3. In this case, the
relative error in data is ‖φd − φ‖ / ‖φ‖ = 0.0378 (3.7%), while the solution Qε =
(9.99, 24.99, 2.98, 15.02, 20.01)t of the linear system (27) has the relative error
‖Qε −Q‖ / ‖Q‖ = 0.0008 (0.08%). Note that this error decreases because λi >
1, for i = 2, ..., 5 (see equation (18)). Finally, Figure 4 shows the concentration
data φd for s = 0.1. In this case, the relative error in data is ‖φd − φ‖ / ‖φ‖ =
0.0756 (7.5%), while the solution Qε = (9.98, 24.99, 2.97, 15.04, 20.02)t of the
linear system (27) has the relative error ‖Qε −Q‖ / ‖Q‖ = 0.0017 (0.17%). As
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Figure 3: The synthetical concentration data φd(R, t) for the param-
eter s = 0.05.

in the previous case, the relative error decreases because the eigenvalues λi,
i = 2, ..., 5, are greater than 1.

As one can see, this method for estimating the emission rates is efficient
and economical, since the problem of recovering the intensity parameters Qi is
reduced to the formulation and solution of a positive system of linear equations
of order N .
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Figure 4: The synthetical concentration data φd(R, t) for the param-
eter s = 0.1.
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