
International Journal of Applied Mathematics
————————————————————–
Volume 34 No. 6 2021, 1153-1170
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v34i6.8

RELIABILITY STUDIES OF GENERALIZED

SIBUYA DISTRIBUTION AND ITS APPLICATION

F. Alqallaf1 §, M.E. Ghitany1,
Ramesh C. Gupta2, J. Mazucheli3

1 Department of Statistics and Operations Research
Faculty of Science, Kuwait University, KUWAIT

2 Department of Mathematics and Statistics
University of Maine, Orono, Maine, USA

3 Department of Statistics
Universidade Estadual de Maringá
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Abstract: In this paper, we have studied the generalized Sibuya distribution
from a reliability point of view. It turns out that this distribution has the log-
convex property and hence is infinitely divisible. This enables us to study the
monotonic properties of various reliability functions including the failure rate,
the mean residual life, the variance residual life and their reversed versions. The
monotone properties of the classes of discrete distributions are parallel to those
of continuous distributions. Procedures are developed to estimate the reliability
functions. Application to real data is provided to illustrate the results.
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1. Introduction

Recently, in [9] a generalized Sibuya distribution (GS1D) is presented and some
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of its properties are studied. The distribution arises as the waiting time (dis-
crete) for the first success in independent Bernoulli trials where the probability
of success at each trial is inversely proportional to the quantity ν + j where
ν ≥ 0 and j is the trial number. More specifically, in a sequence of Bernoulli
trials {Ij , j ∈ N = {1, 2, . . .}}, the probability of success at trial j is given by

P(Ij = 1) =
α

ν + j
, j ∈ N = {1, 2, . . .}, ν ≥ 0, 0 < α < ν + 1.

The above authors also studied the distribution of X − m given X > m,
where X has GS1D and m ∈ N0 = {0, 1, 2, . . .}. In reliability and survival
analysis, X−m is called the residual time or survival time where X is measured
in discrete times, see [5].

The GS1D has one important property of being log-convex, shown in Section
2. This log-convex property enables us to study the monotonicity of various
functions in reliability and life testing. The log-concavity and log-convexity of
functions and sequences in probability have been of great interest to several
authors, see [7]. The log-concavity and log-convexity properties have played
important roles in economics, social sciences, information theory, optimization
and theory of reliability. The log-concavity of the continuous distributions has
been extensively studied in the literature, see [2].

The purpose of this paper is to study the GS1D from a reliability point
of view. The log-concave (log-convex) distributions have increasing failure rate
(decreasing failure rate), abbreviated as IFR (DFR), and hence decreasing mean
residual life (DMRL) and increasing mean residual life (IMRL). We study these,
and some other reliability functions and their monotonicity. We also derive
procedures for estimating these functions. For that, maximum likelihood esti-
mation of the parameters is carried out along with some simulation studies to
examine the performance of the estimators.

The contents of the paper are arranged as follows. In Section 2, we present
the structural properties along with log-convexity property of the GS1D. In Sec-
tion 3, we study various reliability functions and their monotonicity. Section
4 contains the estimation of the various reliability functions. The simulation
studies are carried out in Section 5 to examine the performance of the estima-
tors. Section 6 contains data analysis and some examples. Finally, in Section
7, we present some comments and concluding remarks.
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2. The model and its properties

A discrete random variable X with support on N is said to have a general-
ized Sibuya distribution with parameters α and ν, denoted by GS1(α, ν), if its
probability mass function (PMF) is given by

f(x) =
α

ν + x

x−1∏

i=1

(
1− α

ν + i

)
=

α

ν + x

(ν + 1− α)x−1

(ν + 1)x−1
, (1)

where x ∈ N, ν ≥ 0, 0 < α < ν + 1, and

(a)0 = 1, (a)k = a(a+ 1)(a+ 2) . . . (a+ k − 1), k ∈ N,

is the (rising) Pochhammer symbol. Note that (a)k = Γ(a+k)
Γ(a) , for a > 0, where

Γ(·) is the gamma function. This discrete distribution was recently studied by
[9]. Note that ν = 0 gives the Sibuya distribution [13] with PMF

f(x) = α
(1− α)x−1

x!
, n ∈ N, 0 < α < 1.

The PMF f(x) satisfies the recurrence relation:

f(x+ 1) =
ν + x− α

ν + x+ 1
f(x), x ∈ N,

with f(1) = α
ν+1 .

Since
f(x+ 1)

f(x)
=
ν + x− α

ν + x+ 1
< 1,

it follows that f(x) is strictly decreasing and hence the mode occurs at x = 1.
The mean and variance of the GS1D, respectively, are given by

µ =
ν

α− 1
, ν > 0, 1 < α < ν + 1,

σ2 =
αν(ν + 1− α)

(α− 1)2 (α− 2)
, ν > 1, 2 < α < ν + 1.

The index of dispersion of the GS1D with PMF (1) is given by

γ =
σ2

µ
=

α(ν + 1− α)

(α− 1)(α − 2)
, ν > 1, 2 < α < ν + 1.

A distribution is said to be over-dispersed (under-dispersed) if γ > 1 (γ < 1).
We now show some important properties of GS1D.
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Theorem 1. GS1D is over-dispersed (under-dispersed) if
2 < α < α1 (α1 < α < ν + 1), where

2 < α1 =
ν + 4 +

√
ν(ν + 8)

4
< ν + 1.

Proof. For 2 < α < ν + 1, we have

∂γ

∂α
= − ν(α2 − 2)− 2(α − 1)2

(α− 1)2(α− 2)2
< 0,

since ν > α− 1 > 1 and α2 − 2 > 2(α − 1) > 2.
Therefore, γ is a decreasing function in α, with γ → ∞ as α → 2+ and

γ → 0 as α→ (ν + 1)−. Moreover, for given ν > 1, the equation γ = 1 implies

2α2
1 − (ν + 4)α1 + 2 = 0, ν > 1, 2 < α1 < ν + 1,

which has a unique solution

2 < α1 =
ν + 4 +

√
ν(ν + 8)

4
< ν + 1.

Finally, γ > 1 (γ < 1) if 2 < α < α1 (α1 < α < ν + 1).

Figure 1 shows the index of dispersion of GS1D as a function of α for selected
values of ν.

For a discrete distribution with PMF p(x) = P(X = x), where x ∈ N0 or a
subset of N0, p(x) is log-concave (log-convex) if

p2(x+ 1)− p(x) p(x+ 2) ≥ 0 (≤ 0).

In [6] the log-concavity and log-convexity of p(x) in terms of the sequence
η(x) = p(x+ 1)/p(x) have been studied.

Define

∆η(x) = η(x) − η(x+ 1) =
p(x+ 1)

p(x)
− p(x+ 2)

p(x+ 1)
.

(i) If ∆η(x) > 0, the PMF p(x) is log-concave and hence the distribution is
IFR.

(ii) If ∆η(x) < 0, the PMF p(x) is log-convex and hence the distribution is
DFR.

(iii) If ∆η(x) = 0, the PMF p(x) is given by p(x) = p(0) cx, where c is a
constant. Here, there are three possibilities: geometric distribution (constant
failure rate), discrete uniform distribution (IFR) and discrete power function
(IFR), see [10], p. 172.

In the following we show that the GS1D is log-convex.
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Figure 1: Index of dispersion of GS1 distribution as a function of α
for selected values of ν.

Theorem 2. f(x) is log-convex.

Proof. For x ∈ N,

∆η(x) =
ν + x− α

ν + x+ 1
− ν + x+ 1− α

ν + x+ 2
=

−(α+ 1)

(ν + x+ 1)(ν + x+ 2)
< 0.

Therefore, f(x) is log-convex.

Theorem 2 implies that the Sibuya distribution (ν = 0) is log-convex.

The log-convexity of f(x) of GS1D implies that the distribution is DFR
and hence IMRL. Also, GS1D is infinitely divisible, see [7]. The infinite divisi-
bility property of GS1D was shown by [9], via its representation as mixture of
geometric distribution, see p. 868.

3. Reliability functions

3.1. Failure rate function
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Since the reliability function (survival function) is given by

F (x) = P(X > x) =
x∏

i=1

(
1− α

ν + i

)
=

(ν + 1− α)x
(ν + 1)x

, (2)

where ν ≥ 0, 0 < α < ν + 1, it follows that the failure rate function (FRF) is
given by

h(x) = P(X = x|X ≥ x) =
f(x)

F (x− 1)
=

α

ν + x
, (3)

where x ∈ N and ν ≥ 0, 0 < α < ν + 1. Clearly, h(x) is a decreasing function
in x. This property also follows from the fact that GS1D is log-convex.

Note that the Sibuya distribution (i.e. ν = 0) has FRF:

h(x) =
α

x
, x ∈ N, 0 < α < 1.

For continuous time distribution, the FRF (also known as hazard rate func-
tion) is considered in [1] and [4].

3.2. Reversed failure rate function

The reversed failure rate function (RFRF) of the GS1(α, ν) is given by

h∗(x) = P(X = x|X ≤ x) =
f(x)

F (x)
=

α (ν + 1− α)x−1

(ν + 1)x − (ν + 1− α)x
, (4)

where x ∈ N and ν ≥ 0, 0 < α < ν+1. Note that h∗(1) = 1, since f(1) = F (1).
Since GS1D is log-convex, h∗(x) is decreasing in x.
Note that the Sibuya distribution (i.e. ν = 0) has RFRF:

h∗(x) =
α (1− α)x−1

x!− (1− α)x
, x ∈ N, 0 < α < 1.

3.3. Mean residual life function

In [9] it is shown that the conditional distribution of X −m given X > m,
where m ∈ N0, is again GS1D with parameters α and ν +m. Specifically, for
m ∈ N0,

X −m|X > m ∼ GS1(α, ν +m), ν ≥ 0, 0 < α < ν +m+ 1, (5)

see Proposition 3, p. 860, of [9].
Using equation (5), the mean residual life function (MRLF) of the GS1D is

given by

µ(x) = E(X − x|X ≥ x) =
ν + x− 1

α− 1
− 1, (6)
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where x ∈ N and ν > 0, 1 < α < ν + x.
Clearly, µ(x) is increasing in x. This property also follows from the fact

that DFRF h(x) implies IMRLF µ(x). Also, µ(x) does not exist for Sibuya
distribution (ν = 0), since its mean does not exist.

For continuous time distribution, the MRLF is considered in [1].

3.4. Reversed mean residual life function

The reversed mean residual life function (RMRLF) of GS1(α, ν) is given by

µ∗(x) = E(x−X|X ≤ x)

=

∑x
i=1 F (i− 1)

F (x)

=
x− ν

α−1

[
1− (ν+1−α)x

(ν)x

]

1− (ν+1−α)x
(ν+1)x

, (7)

where x ∈ N and ν > 0, 1 < α < ν + 1. Note that µ∗(1) = 0.
Since h∗(x) is decreasing, then µ∗(x) is increasing, see [5], Theorem 3.1, p.

4120.
Note that µ∗(x) does not exist for Sibuya distribution (ν = 0), since its

mean does not exist.

3.5. Variance residual life

Using equation (5), the variance residual life function (VRLF) of theGS1(α, ν)
distribution is given by

σ2(x) = Var(X − x|X ≥ x) =
α(ν + x− 1)(ν + x− α)

(α− 1)2 (α− 2)
, (8)

where x ∈ N and ν > 1, 2 < α < ν + x.
Clearly, σ2(x) is increasing in x. This property also follows from the fact

that IMRLF µ(x) implies IVRLF σ2(x), see [5], Theorem 2.2, p. 4118. Also,
note that σ2(1) = σ2.

Note that for Sibuya distribution, VRLF does not exist since its variance
does not exist.

3.6. Reversed variance residual life

The reversed variance residual life function (RVRLF) of the GS1(α, ν) dis-
tribution is given by

σ∗2(x) = Var(x−X|X ≤ x)
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= (2x+ 1)µ∗(x)− [µ∗(x)]2 − 2
∑x

i=1 i F (i− 1)

F (x)
, (9)

where x ∈ N, µ∗(x) is the RMRLF (7) (See [5] pp. 4119-4120) and

x∑

i=1

i F (i− 1) =
x(x+ 1)

2

+
(ν + x)[x(α − 1) + ν − 1] F (x)− ν(ν − 1)

(α− 1)(α − 2)
.

Note that σ∗2(1) = Var(1−X|X ≤ 1) = 0.
Since IRMRLF implies IRVARF, see [5] Theorem 3.2, p. 4121, it follows

that σ∗2(x) is increasing in x ∈ N.

4. Maximum likelihood estimation

Let x1, x2, . . . , xn be a random sample of size n from GS1(α, ν) distribution. We
assume that there exists at least one xi > 1, i = 1, 2, . . . , n. The log-likelihood
function is given by

ℓn(α, ν) =
n∑

i=1

ln f(xi)

= n ln(α)−
n∑

i=1

ln(ν + xi)

+

n∑

i=1

xi−1∑

j=1

[ln(ν + j − α)− ln(ν + j)]

= n ln(α)−
n∑

i=1

xi∑

j=1

ln(ν + j)

+
n∑

i=1

xi−1∑

j=1

ln(ν + j − α). (10)

It follows that the maximum-likelihood estimators (MLEs) (α̂, ν̂) of the
parameters (α, ν) are the simultaneous solutions of the equations:

∂ℓn
∂α

=
n

α
−

n∑

i=1

xi−1∑

j=1

1

ν + j − α
= 0, (11)
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∂ℓn
∂ν

= −
n∑

i=1

xi∑

j=1

1

ν + xi
+

n∑

i=1

xi−1∑

j=1

1

ν + j − α
= 0. (12)

The solution of (11) and (12) leads to

α̂ =
n∑n

i=1

∑xi

j=1
1

ν̂+j

= η1(ν̂), say,

where ν̂ is the solution of the non-linear equation:

n

η1(ν̂)
−

n∑

i=1

xi−1∑

j=1

1

ν̂ + j − η1(ν̂)
= 0.

The second derivatives of the log-likelihood function are given by

∂2ℓn
∂α2

= − n

α2
−

n∑

i=1

xi−1∑

j=1

1

(ν + j − α)2
,

∂2ℓn
∂ν2

=

n∑

i=1

xi∑

j=1

1

(ν + j)2
−

n∑

i=1

xi−1∑

j=1

[
1

(ν + j − α)2

]
,

∂2ℓn
∂α∂ν

=

n∑

i=1

xi−1∑

j=1

1

(ν + j − α)2
.

The expected information matrix based on a single observation is given by

I(α, ν) = [Iij(α, ν)], i, j = 1, 2,

where

I11(α, ν) =
1

α2
+C1(α, ν),

I22(α, ν) = C1(α, ν)− C2(α, ν),

I12(α, ν) = −C1(α, ν),

with

C1(α, ν) = E



X−1∑

j=1

1

(ν + j − α)2



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= E
[
ψ′(ν + 1− α)− ψ′(ν +X − α)

]

= ψ′(ν + 1− α)

−
∞∑

x=1

ψ′(ν + x− α)
α

ν + x

(ν + 1− α)x−1

(ν + 1)x−1
,

and

C2(α, ν) = E




X∑

j=1

1

(ν + j)2




= E
[
ψ′(ν + 1)− ψ′(ν + 1 +X)

]

= ψ′(ν + 1)−
∞∑

x=1

ψ′(ν + 1 + x)
α

ν + x

(ν + 1− α)x−1

(ν + 1)x−1
,

with ψ′(z) = d2

dz2
ln Γ(z) the digamma function.

Under mild regularity conditions (see [11], pp. 461–463), we have the fol-
lowing asymptotic result:

√
n

((
α̂
ν̂

)
−

(
α
ν

))
d→ N2

(
0, I−1(α, ν)

)
,

where N2 (0,Σ) denotes the bivariate normal distribution with mean 0 and
variance-covariance matrix Σ.

Since the reliability functions, considered in Section 3, are real-valued func-
tions in the parameters, say g(x;α, ν), we can use the delta-method to obtain

√
n(g(x; α̂, ν̂))− g(x;α, ν))

d→ N(0, τ2).

where

τ2 = D⊤(x, α, ν) I−1(α, ν) D(x, α, ν),

with

D⊤(x, α, ν) =

(
∂g(x, α, ν)

∂α
,
∂g(x, α, ν)

∂ν

)
.
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5. Monte Carlo simulation study

In this section, we evaluate the performance of the maximum likelihood estima-
tors and their asymptotic normality through a Monte Carlo simulation study.

To generate data from the GS1D, we used the mixed Poisson representation:

X|U = λ ∼ 1 + Poisson(λ),

U
d
=
T1 T2
T3

,

where T1 ∼ Exponential(1), T2 ∼ Gamma(ν + 1− α, 1) and T3 ∼ Gamma(α, 1)
are independent random variables. See Proposition 7 of [9], p. 865.

The simulation experiment was repeated N = 10, 000 times each with sam-
ple size

n = 50, 100, 150, 200, 250, 300.

The true values of the parameters (α, ν) are chosen as

(0.5, 0), (0.5, 0.5), (1, 0.5), (1.5, 1), (1.5, 2), (2, 1.5), (2.5, 2), (2.5, 3).

Note that for cases 1-3 (α ≤ 1), µ does not exist, for cases 4-6 (1 < α ≤ 2), µ
only exists, and for cases 7-8 (α > 2), σ2 exists.

All simulations were performed in Ox Console, version 8.02, [3], using the
MaxBFGS function to obtain the maximum likelihood estimates of the param-
eters α and ν.

The evaluation of point estimation was performed based on the bias

Bias(θ̂) =
1

N

N∑

i=1

(θ̂ − θ), θ = α, ν,

and mean squared error (MSE)

MSE(θ̂) =
1

N

N∑

i=1

(θ̂ − θ)2, θ = α, ν,

for each sample size n. The estimated biases and MSEs of (α̂, ν̂) versus n are
shown in Figure 2. The biases are positive. The biases and MSEs decrease with
increasing n.

The evaluation of interval estimation was performed based on the coverage
probability (CP) of 95% confidence intervals of each parameter and the average
width (AW) 95% confidence intervals of each parameter for each sample size.
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Figure 2: Estimated bias (upper panel) and estimated mean-squared
error (lower panel) of the MLEs α̂ and ν̂. 1: (α = 0.5, ν = 0.0), 2:
(α = 0.5, ν = 0.5), 3: (α = 1.0, ν = 0.5), 4: (α = 1.5,
ν = 1.0), 5: (α = 1.5, ν = 2.0), 6: (α = 2.0, ν = 1.5), 7: (α = 2.5,
ν = 2.0) and 8 : (α = 2.5, ν = 3.0).

The CPs and AWs of 95% CIs of α and λ versus n are shown in Figure
3. This figure shows that the coverage probabilities of the confidence intervals
are close to the nominal level of 95% and that the average confidence widths
decrease as the sample size increases, as one would expect.
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Figure 3: Estimated coverage probability (CP) of 95% confidence
interval of α and ν (upper panel) and estimated average width (AW)
of 95% confidence interval of α and ν (lower panel). 1: (α = 0.5,
ν = 0.0), 2: (α = 0.5, ν = 0.5), 3: (α = 1.0, ν = 0.5), 4: (α = 1.5,
ν = 1.0), 5: (α = 1.5, ν = 2.0), 6: (α = 2.0, ν = 1.5), 7: (α = 2.5,
ν = 2.0) and 8 : (α = 2.5, ν = 3.0).

6. Data analysis

In this section, we analyze a real data set represents 213 observations on the
number of successive failures of the air conditioning system of a fleet of 13
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Boeing 720 jet airplanes, see [12].
Table 1 shows the maximum likelihood estimates (their standard errors)

and the estimated log-likelihood function for Sibuya and generalized Sibuya
distributions.

Table 1: MLEs (standard errors), estimated log-likelihood for Sibuya and
and GS1 distributions.

Distribution MLE (S.E.) log-likelihood

Sibuya α̂ = 0.207 (0.014) -1370.957

GS1 α̂ = 5.753 (2.908) -1175.043
ν̂ = 444.911 (261.562)

Table 2: Observed frequency (O) and expected frequency (E) for Sibuya
and GS1 distributions.

class O E (Sibuya) E (GS1 )

0-49 97 131.75 96.59
50-99 51 10.92 49.74
100-149 21 5.68 26.56
150-199 14 3.74 14.96
200-249 14 2.75 8.82
≥ 250 16 58.16 16.33

Total 213 213 213

Table 3 shows summary of Chi-square goodness-of-fit test for Sibuya and
GS1 distributions. Based on Table 3, we reject the null hypothesis that data is
drawn from Sibuya distribution and fail to reject the null hypothesis that data
is drawn from GS1 distribution.

Table 3: Chi-square goodness-of-fit test for Sibuya and GS1 distributions.

Distribution d.f. χ2 statistic p-value

Sibuya 4 302.32 0.000

GS1 3 4.31 0.230

In the following, we present the point estimation and 95% confidence inter-
val of the reliability measures: MRLF µ(x) and VRLF σ2(x) for given value
x = 1, 2, . . ..
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Figure 4: Observed versus expected relative frequency of Sibuya and
Generalized Sibuya distributions for Proschan data.
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Figure 5: Confidence intervals of MRLF µ(x) and VRLF σ2(x) for
Proschan data.

Note that µ̂ = µ̂(1) + 1 = 93.6, S.E.(µ̂ )=S.E.(µ̂(1) )=7.9 and 95% C.I. of
µ is (78.1,109.1).

Note that σ̂2 = σ̂2(1) = 13288.1, S.E.(σ̂2 )=S.E.(σ̂2(1) )=4847.4 and 95%
C.I. of σ2 is (3787.2,22788.9).
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Table 4: Point and interval estimation of MRLF µ(x).

x µ̂(x) S.E.(µ̂(x) ) 95% C.I. of µ(x) C.I. width

1 92.6 7.9 (77.1,108.1) 31.0
2 92.8 8.0 (77.2,108.4) 31.2
3 93.0 8.0 (77.3,108.7) 31.4
4 93.2 8.1 (77.5,109.0) 31.6
5 93.4 8.1 (77.6,109.3) 31.8
6 93.7 8.2 (77.7,109.6) 32.0
7 93.9 8.2 (77.8,110.0) 32.2
8 94.1 8.3 (77.9,110.3) 32.4
9 94.3 8.3 (78.0,110.6) 32.6
10 94.5 8.4 (78.1,110.9) 32.8

Table 5: Point and interval estimation of VRLF σ2(x).

x σ̂2(x) S.E.(σ̂2(x) ) 95% C.I. of σ2(x) C.I. width

1 13288.1 4847.4 (3787.2,22788.9) 19001.7
2 13348.2 4898.8 (3746.6,22949.8) 19203.2
3 13408.5 4950.4 (3705.6,23111.3) 19405.7
4 13468.8 5002.4 (3664.2,23273.5) 19609.3
5 13529.4 5054.6 (3622.5,23436.3) 19813.8
6 13590.0 5107.0 (3580.4,23599.7) 20019.4
7 13650.9 5159.7 (3537.9,23763.8) 20225.9
8 13711.8 5212.6 (3495.0,23928.5) 20433.5
9 13772.9 5265.8 (3451.8,24093.9) 20642.1
10 13834.1 5319.3 (3408.3,24259.9) 20851.6
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7. Concluding remarks

As pointed out by [8], discrete lifetimes have important applications. For ex-
ample, actuaries and biostatisticians are interested in lifetimes of persons or
organisms measured in months, weeks, or days. The reliability engineers use
discrete lifetimes in modeling the number of defects in an equipment or the
number of miles a plane has flown.

The log-convex property of the generalized Sibuya distribution studied in
this paper, has various implications in reliability studies. In particular, it en-
ables us to study the monotonic properties of various reliability functions. It
also follows that generalized Sibuya distribution is infinitely divisible which has
some important applications in probability theory.
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