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1. Introduction

Classical and nonclassical problems for third order partial differential equations
have been studied widely in the literature (for instance, see [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14]).
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Time delay is one of the most common phenomena occurring in many en-
gineering applications. In control theory, the process of sampled-data control
is a typical example where time delay happens in the transmission from mea-
surement to controller.

Theory and applications of delay linear and nonlinear third order ordinary
and partial differential and difference equations with the delay term were widely
investigated (see, e.g., [15], [16], [17], [18], [19], [20], [21], [22] and the references
given therein).

Our goal in this paper is to investigate the initial value problem for third
order partial delay differential and difference equations with nonlocal boundary
condition. The paper is organized as follows. Section 3 is Introduction. In
Section 2, a theorem on stability of the initial value problem for the third
order partial delay differential equation with nonlocal boundary condition is
established. In Section 3, the first order of accuracy difference scheme for
solution of this problem is studied. Stability estimates for solution of this
difference scheme are proved. In Section 4, numerical results are provided.
Finally, Section 5 is conclusion.

2. Stability of differential problem

In [0,∞)× (0, l) , the initial boundary value problem for the third order partial
differential equation with time delay and nonlocal boundary conditions







∂3u(t,x)
∂t3

− (a(x)utx(t, x))x + δu(t, x)

= −b ((−a(x)ux(t− w, x))x + δu(t, x))

+f(t, x), 0 < t <∞, (0, l) ,

u(t, x) = g(t, x), −w ≤ t ≤ 0, x ∈ [0, l] ,

u(t, 0) = u(t, l), ux(t, 0) = ux(t, l), 0 ≤ t <∞

(1)

is considered. Throughout this paper, we will assume that
a(x) ≥ a > 0, x ∈ (0, ℓ) and a(l) = a(0).

We consider the Hilbert space L2 [0, l] of the all square integrable functions
defined on [0, l] , equipped with the norm

‖ f ‖L2[0,l]=

(∫ l

0
|f(x)|2dx

) 1
2

.
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Under compatibility conditions problem, (1) has a unique solution u(t, x) for
the smooth functions a(x), x ∈ (0, ℓ), g(t, x),
− w ≤ t ≤ 0, x ∈ [0, l] , f(t, x), 0 < t <∞, x ∈ (0, l) , and δ > 0, b ∈ R1.

Let us present a theorem on stability of problem (1).

Theorem 1. For the solutions of problem (1), we have following stability
estimates:

max
0≤t≤nw

‖vtt(t, ·)‖W 1
2 [0,l]

, max
0≤t≤nw

‖vt(t, ·)‖W 2
2 [0,l]

, max
0≤t≤nw

‖v(t, ·)‖W 3
2 [0,l]

≤M2

[

(2 + |b|w)n a0 +

∫ n

j=1
(2 + |b|w)n−j

∫ jw

(j−1)ω
‖f(s, ·)‖

W1
2
[0,l]

ds

]

,

a0 = max

{

max
−w≤t≤0

‖gtt(t, ·)‖W 1
2 [0,l]

, max
−w≤t≤0

‖g(t, ·)‖W 3
2 [0,l]

}

,

where M2 does not depend on g(t, x) and f(t, x). Here, W k
2 [0, l],

k = 1, 2, 3 are Sobolev spaces of all square integrable functions ψ (x) defined on
[0, l] equipped with the norm

‖ψ‖W k
2 [0,l] =





∫ l

0

k∑

j=0



ψx · · · x
︸ ︷︷ ︸

j time

(x)





2

dx





1
2

.

Proof. This allows us to reduce the problem (1) to the initial value problem







d3v(t)
dt3

+Adv(t)
dt = bAv(t−w) + f(t), 0 < t <∞,

v(t) = g(t), −w ≤ t ≤ 0

(2)

in a Hilbert space H = L2 [0, l] with a self-adjoint positive definite operator A
defined by formula

Au(x) = −(a(x)ux(x))x + δu(x) (3)

with domain

D(A) = {u(x) : u(x), ux(x), (a(x)ux)x ∈ L2 [0, l] , u (l) = u (0) ,

ux (l) = ux (0)}.

The proof of Theorem 1 is based on the self-adjointness and positive defi-
niteness of the space operator A defined by formula (3) [25] and the following
theorem on stability of the solution of the abstract problem (2).
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Theorem 2. ([23]) For the solution of problem (2) the following estimate
holds:

max
0≤t≤nw

∥
∥
∥
∥
A

1
2
d2v(t)

dt2

∥
∥
∥
∥
H

, max
0≤t≤nw

∥
∥
∥
∥
A
dv(t)

dt

∥
∥
∥
∥
H

,
1

2
max

0≤t≤nw

∥
∥
∥A

3
2 v(t)

∥
∥
∥
H

≤ (2 + |b|w)n a0 +

∫ nw

0

∥
∥
∥A

1
2 f(s)

∥
∥
∥
H
ds, n = 1, 2, ..., (4)

where

a0 = max

{

max
−w≤t≤0

∥
∥
∥
∥
A

1
2
d2g(t)

dt2

∥
∥
∥
∥
H

, max
−w≤t≤0

∥
∥
∥
∥
A
dg(t)

dt

∥
∥
∥
∥
H

,

max
−w≤t≤0

∥
∥
∥A

3
2 g(t)

∥
∥
∥
H

}

.

3. Stability of the difference scheme

Now, we study the stable difference scheme for the approximate solution of
problem (1). The discretization of problem (1) is carried out in two steps.

In the first step, the spatial discretization is carried out. We define the grid
space

[0, ℓ]h =
{
x = xn

∣
∣ xn = nh, 0 ≤ n ≤M, Mh = ℓ

}
.

We introduce the Hilbert space L2h = L2([0, ℓ]h) of the grid functions ϕh(x) =
{ϕn}M0 defined on [0, ℓ]h, equipped with the norm

∥
∥
∥ϕh

∥
∥
∥
L2h

=




∑

x∈[0,ℓ]h

∣
∣
∣ϕh(x)

∣
∣
∣

2
h





1/2

.

To the differential operator A defined by the formula (3), we assign the difference
operator Ax

h by the formula

Ax
hϕ

h(x) =
{

−
(
a(x)ϕn

x

)

x
+ δϕn(x)

}M−1

−M+1
, (5)

acting in the space of grid functions ϕh(x) = {ϕn}M0 and satisfying the condi-
tions ϕ0 = ϕM , ϕ1 − ϕ0 = ϕM − ϕM−1. Here

ϕn
x̄ =

ϕn − ϕn−1

h
, 1 ≤ n ≤M, ϕn

x =
ϕn+1 − ϕn

h
, 0 ≤ n ≤M − 1.
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It is well-known that Ax
h, defined by (5), is a self-adjoint positive definite op-

erator in L2h. With the help of Ax
h, the first discretization step results in the

following problem






∂3uh(t, x)

∂t3
+Ax

hu
h(t, x) = −bAx

hu
h(t− w, x)

+fh(t, x), x ∈ [0, ℓ]h, 0 < t <∞,

uh(t, x) = gh(t, x), −w ≤ t ≤ 0, x ∈ [0, ℓ]h, − w < t < 0.

(6)

In the second step, we replace the problem (6) with the following first order of
accuracy difference scheme







uh
k+2(x)−3uh

k+1(x)+3uh
k
(x)−uh

k−1(x)

τ3 +Ax
h

uh
k+2(x)−uh

k+1(x)

τ

= bAx
hu

h
k−N(x) + fhk (x), f

h
k (x)

= fh(tk, x), k ≥ 1, x ∈ [0, ℓ]h,

uhk(x) = gh(tk, x),−N ≤ k ≤ 0,

(Ih + τ2Ax
h)

uh
1 (x)−uh

0 (x)
τ = ght (0, x),

(Ih + τ2Ax
h)

uh
2 (x)−2uh

1 (x)+uh
0 (x)

τ2
= ghtt(0, x), x ∈ [0, ℓ]h,

(Ih + τ2Ax
h)

uh
mN+1(x)−uh

mN
(x)

τ =
uh
mN

(x)−uh
mN−1(x)

τ , x ∈ [0, ℓ]h,

(Ih + τ2Ax
h)

uh
mN+2(x)−2uh

mN+1(x)+uh
mN (x)

τ2

=
uh
mN

(x)−2uh
mN−1(x)+uh

mN−2(x)

τ2 , x ∈ [0, ℓ]h,m = 1, 2, ...,

(7)

where τ = 1/N and tk = kτ , −N ≤ k <∞.

Theorem 3. Let τ and h be sufficiently small numbers. For the solution
of difference scheme (7) the following estimates

max
0≤k≤(m+1)N−2

∥
∥
∥
∥
∥

uhk+2 − 2uhk+1 + uhk
τ2

∥
∥
∥
∥
∥
W 1

2h

, max
1≤k≤(m+1)N

∥
∥
∥
∥
∥

uhk − uhk−1

τ

∥
∥
∥
∥
∥
W 2

2h

,

max
0≤k≤(m+1)N

‖uhk‖W 3
2h

≤ C1

[

(2 + τ |b|(N − 2))mbh0
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+

m∑

j=1

(2 + τ |b|(N − 2))m−jτ

jN
∑

s=(j−1)N+1

‖f(ts)‖W 1
2h



 ,m = 0, 1, ...,

bh0 = max

{

max
−N≤k≤0

‖ghtt(tk)‖W 1
2h
, max

−N≤k≤0
‖ght (tk)‖W 2

2h
,

max
−N≤k≤0

‖gh(tk)‖W 3
2h

}

hold, where C1 does not depend on τ, h, gh(tk), and f
h
k (x). Here,W

k
2h, k = 1, 2, 3

are spaces of all mesh functions ψh (x) defined on [0, l]h equipped with the norm

∥
∥
∥ψh

∥
∥
∥
W k

2h

=




∑

x∈[0,l]h

k∑

j=0



ψh
x · · · x
︸ ︷︷ ︸

j time

(x)





2

hk





1
2

.

Proof. The difference scheme (7) can be written in the abstract form







uh
k+2−3uh

k+1+3uh
k
−uh

k−1

τ3 +Ah
uh
k+2−uh

k+1

τ

= bAhu
h
k−N + fhk , k ≥ 1,

uhk = ghk ,−N ≤ k ≤ 0,

(Ih + τ2Ah)
uh
1−uh

0
τ = ght (0), (Ih + τ2Ah)

uh
2−2uh

1+uh
0

τ2
= ghtt(0),

(Ih + τ2Ah)
uh
mN+2−2uh

mN+1+uh
mN

τ2
=

uh
mN−2uh

mN−1+uh
mN−2

τ2
,

(Ih + τ2Ah)
uh
mN+1−uh

mN

τ =
uh
mN

−uh
mN−1

τ ,m = 1, 2, ...

(8)

in a Hilbert space L2h with self-adjoint positive definite operator Ah = Ax
h by

formula (5).

Here, ghk = ghk (x), f
h
k = fhk (x) and uhk = uhk(x) are known and unknown

abstract mesh functions defined on [0, l]h with the values inH = L2h. Therefore,
the proof of Theorem 2 is based on the self-adjointness and positive definiteness
of the space operator Ah (5) [26] and the following theorem on stability of the
solution of the difference scheme (8).
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Theorem 4. ([27]) For the solution of difference scheme (8) the following
estimate holds:

1

2
max

0≤k≤(m+1)N−2

∥
∥
∥
∥
∥
A

1
2
h

uhk+2 − 2uhk+1 + uhk
τ2

∥
∥
∥
∥
∥
H

, max
1≤k≤(m+1)N

∥
∥
∥
∥
∥
Ah

uhk − uhk−1

τ

∥
∥
∥
∥
∥
H

,

max
0≤k≤(m+1)N

‖A
3
2
hu

h
k‖H ≤ C1

[

(2 + τ |b|(N − 2))mbh0

+

m∑

j=1

(2 + τ |b|(N − 2))m−jτ

jN
∑

s=(j−1)N+1

‖A
1
2
Hf(ts)‖H



 , m = 0, 1, ...,

where

b0 = max{ max
−N≤k≤0

‖A
1
2
h g

′′(tk)‖H , max
−N≤k≤0

‖Ahg
h
t (tk)‖H ,

max
−N≤k≤0

‖A
3
2
h g

h(tk)‖H}.

4. Numerical results

When the analytical methods do not work properly, the numerical methods
for obtaining the approximate solutions of partial differential equations play
an important role in applied mathematics. In this section, we will use the first
order of accuracy difference scheme to approximate the solution of a simple test
problem







∂3u(t,x)
∂t3

− ∂3u(t,x)
∂t∂x2 + 16∂u(t,x)

∂t

= −0.1(−∂2u(t−1,x)
∂x2 + 16u(t− 1, x))

−48e−2t sin 2x+ 2e−2(t−1) sin 2x,

0 < t <∞, 0 < x < π,

u(t, x) = e−2t sin 2x, −1 ≤ t ≤ 0, 0 ≤ x ≤ π,

u(t, 0) = u(t, π), ux(t, 0) = ux(t, π), 0 ≤ t <∞.

(9)

The exact solution of problem (9) is u(t, x) = e−2t sin 2x, 0 ≤ x ≤ π,−1 ≤ t <
∞. For the approximate solutions of the problem (9), using the set of grid
points

[−1,∞)τ × [0, π]h = {(tk, xn) : tk = kτ,−N ≤ k,Nτ = 1,
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xn = nh, −M ≤ n ≤M,Mh = π},

we get the first order of accuracy in t difference scheme







uk+2
n −3uk+1

n +3uk
n−uk−1

n

τ3
−

uk+2
n+1−uk+1

n+1−2(uk+2
n −uk+1

n )+uk+2
n−1−uk+1

n−1

τh2

+16uk+2
n −uk+1

n

τ = −(0.1)

(

−
uk−N
n+1 −2uk−N

n +uk−N
n−1

h2 + 16uk−N
n

)

−48e−2tk sin 2xn + 2e−2(tk−N ) sin 2xn,

tk = kτ, mN + 1 ≤ k ≤ (m+ 1)N − 2,

m = 0, 1, ..., 1 ≤ n ≤M − 1,

Nτ = 1, xn = nh, 1 ≤ n ≤M − 1, Mh = π,

u0n = sin(2nh),
u1
n−u0

n

τ + τ(−
u1
n+1−2u1

n+u1
n−1

h2 + 16u1n)+

τ(
u0
n+1−2u0

n+u0
n−1

h2 − 16u0n) = −2 sin(2nh),
u2
n−2u1

n+u0
n

τ2
+ (−

u2
n+1−2u2

n+u2
n−1

h2 + 16u2n)

+2(
u1
n+1−2u1

n+u1
n−1

h2 − 16u1n)

+(−
u0
n+1−2u0

n+u0
n−1

h2 + 16u0n) = 4 sin(2nh), 0 ≤ n ≤M,

umN+1
n −umN

n

τ + τ(−
umN+1
n+1 −2umN+1

n +umN+1
n−1

h2 + 16umN+1
n )

+τ(
umN
n+1−2umN

n +umN
n−1

h2 − 16umN
n ) = umN

n −umN−1
n

τ ,
umN+2
n −2umN+1

n +umN
n

τ2

+(−
umN+2
n+1 −2umN+2

n +umN+2
n−1

h2 + 16umN+2
n )

+2(
umN+1
n+1 −2umN+1

n +umN+1
n−1

h2 − 16umN+1
n )

+(−
umN
n+1−2umN

n +umN
n−1

h2 + 16umN
n )

= umN
n −2umN−1

n +umN−2
n

τ2
, 0 ≤ n ≤M, m = 1, 2, . . . ,

uk0 = ukM , u
k
1 − uk0 = ukM − ukM−1,

mN ≤ k ≤ (m+ 1)N, m = 1, 2, . . . .

(10)
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We can write (10) in the matrix form







BUk+2 + CUk+1 +DUk + EUk−1 = ϕ(Uk−N ),

k = 1, 2, 3, . . . , U0 =












0

sin (2h)
...

sin (2(M − 1)h)

0












,

U1 = (1− 2τ)U0, U2 = U1 − (1− 4τ2)U0

UmN+1 = F−1HUmN − F−1UmN−1,

UmN+2 = 2UmN+1 + F−1PUmN − 2F−1UmN−1

+F−1UmN−2, m = 1, 2, . . . ,

(11)

where B,C,D,E, F,H and P are (M+1)×(M+1) matrices, ϕ(Uk−N ), U0, U1

and U r, r = k, k ± 1, k + 2 are (M + 1)× 1 column vectors defined by

B =













1 0 0 0 · 0 0 −1
a b a · 0 0 0
0 a b a · 0 0 0
· · · · · · · ·
0 0 0 0 · b a 0
0 0 0 0 · a b a
1 −1 0 0 · 0 −1 1













,

C =













0 0 0 0 · 0 0 0
−a c −a · 0 0 0
0 −a c −a · 0 0 0
· · · · · · · ·
0 0 0 0 · c −a 0
0 0 0 0 · −a c −a
0 0 0 0 · 0 0 0













,

DE(g) =













0 0 0 0 · 0 0 0
0 g 0 · 0 0 0
0 0 g 0 · 0 0 0
· · · · · · · ·
0 0 0 0 · g 0 0
0 0 0 0 · 0 g 0
0 0 0 0 · 0 0 0













,
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FH(z) =













1 0 0 0 · 0 0 −1
−s z −s · 0 0 0
0 −s z −s · 0 0 0
· · · · · · · ·
0 0 0 0 · z −s 0
0 0 0 0 · −s z −s
1 −1 0 0 · 0 −1 1













,

P =













1 0 0 0 · 0 0 −1
s p s · 0 0 0
0 s p s · 0 0 0
· · · · · · · ·
0 0 0 0 · p s 0
0 0 0 0 · s p s
1 −1 0 0 · 0 −1 1













,

DE(g) =

{

D, g = d,

E, g = e,

FH(z) =

{

F, z = q,

H, z = t,

ϕ(Uk−N ) =










0
ϕk
1
...

ϕk
M−1

0










, U r =










U r
0

U r
1
...

U r
M−1

U r
M










, r = k, k ± 1, k + 2,

where

ϕk
n = −(0.1)

(

−
uk−N
n+1 − 2uk−N

n + uk−N
n−1

h2
+ 16uk−N

n

)

− 48e−2tk sin 2xn + 2e−2(tk−N ) sin 2xn,

tk = kτ, mN + 1 ≤ k ≤ (m+ 1)N − 2,

m = 0, 1, ..., 1 ≤ n ≤M − 1.

Here, we denote a = − 1
τh2 , b =

1
τ3

+ 2
τh2 +

16
τ , c = − 3

τ3
− 2

τh2 −
16
τ , d = 3

τ3
, e =

− 1
τ3
, t = 2 + 2τ2

h2 + 16τ2, p = −2τ2

h2 − 16τ2,
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q = 1 + 2τ2

h2 + 16τ2, s = τ2

h2 .

The numerical solutions are recorded for different values ofN andM , and ukn
represents the numerical solution of this difference scheme at u(tk, xn). Table
1 is constructed for N = M = 40, 80, 160 in t ∈ [0, 1], t ∈ [1, 2], t ∈ [2, 3]
respectively and the errors are computed by

mEN
M = max

mN+1≤k≤(m+1)N, 0≤n≤M
|u(tk, xn)− ukn|.

Table 1. Errors of difference scheme (10).

(N,M) N = M = 40 N = M = 80 N = M = 160

t ∈ [0, 1] 0.0790 0.0400 0.0200

t ∈ [1, 2] 0.0823 0.0411 0.0205

t ∈ [2, 3] 0.0789 0.0402 0.0202

If N and M are doubled, the values of the errors are decreases by a factor
of approximately 1/2 for the first order difference scheme (10). The errors
presented in this table indicates the accuracy of difference scheme.

5. Conclusion

In the present paper, the stability of the initial boundary value problem for
the third order partial delay differential equation with nonlocal conditions is
investigated. The first order of accuracy difference scheme for solution of this
problem is presented. Stability estimates for solution of this difference scheme
are proved. Numerical results are provided. Some statements of the present
paper were published, without proof, in [23], [24].
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