COMPUTATIONAL ERRORS

Abstract

Bounds are presented for average rounding errors in double precision binary floating point arithmetic obeying the IEEE Standard [5]. The average errors are up to three times less than the usually used maximal errors and may be more appropriate for practical calculations. For this purpose an alternative representation of machine numbers is proposed. Various numerical computations with unexpectedly large errors are also considered. The computations are done in MATLAB environment [9].

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 35
Issue: 1
Year: 2022

DOI: 10.12732/ijam.v35i1.14

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] I. Alabdulmohsi, Summability Calculus: A Comprehensive Theory of Fractional Finite Sums, Springer, Berlin (2018); doi 10.1007/978-3-319-74648-7.
  2. [2] N. Higham, The scaling and squaring method for the matrix exponential revisited, SIAM Review, 51 (2009), 747-764; doi 10.1137/090768539.
  3. [3] N. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia (2002), ISBN 0-89871-521-0.
  4. [4] N. Higham, M. Konstantinov, V. Mehrmann, P. Petkov, The sensitivity of computational control problems, IEEE Control Systems Magazine, 24 (2004), 28-43; doi 10.1109/MCS.2004.1272744.
  5. [5] IEEE 754–2019, Standard for Floating-Point Arithmetic, New York (2019); standards.ieee.org/standard/754-2019.html. COMPUTATIONAL ERRORS 203
  6. [6] M. Konstantinov, P. Petkov, Large computational errors, Proceedings of the International Scientific Conference REMIA2021, Plovdiv (2021), 31-49, ISBN 978-619-202711-7.
  7. [7] Maple (ver. 2020), Maplesoft, Waterloo (2020), maplesoft.com.
  8. [8] Mathematica (ver. 12.0), Wolfram Reseach Inc., Champaign (2019), wolfram. com/mathematica.
  9. [9] MATLAB (ver. R2019a), MathWorks Inc., Natick (2019), mathworks. com/products/matlab.
  10. [10] P. Petkov, N. Christov, M. Konstantinov, Computational Methods for Linear Control Problems, Prentice Hall, Hemel Hempstead (1991), ISBN 0-13-161803-2.
  11. [11] N. Vulchanov, M. Konstantinov, Modern Mathematical Methods for Computer Calculations, Part 1: Foundations of Computer Calculations, Bulgarian Institute for Analyses and Research, Sofia (1996, 2006), ISBN 954-8949-01-6.